14 research outputs found

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Improvised laparoscopic stone picker

    No full text

    Ameliorative potential of Lavandula stoechas in metabolic syndrome via multitarget interactions

    No full text
    Ethnopharmacological importance: Decoction and infusion prepared from aerial parts of Lavandula stoechas L. (L. stoechas) have been traditionally used as remedy against several components of metabolic syndrome (MetS) and associated disorders including type II diabetes and cardiovascular diseases by Anatolian people. Aim of the study: The aim is to elucidate the potential ameliorative effects of L. stoechas aqueous extracts on insulin resistance and inflammation models through multitarget in vitro approaches and also to elucidate mechanism of action by analyzing transcriptional and metabolic responses. Materials and methods: An aqueous extract was prepared and fractionated to give rise to ethyl acetate (EE) and butanol (BE) extracts. The anti-insulin resistance effects of BE and EE were evaluated on palmitate induced insulin resistance model of H4IIE, C2C12 and 3T3L1 cells by using several metabolic parameters. Specifically, whole genome transcriptome analysis was performed by using microarray over 55.000 genes in control, insulin resistant and EE (25 µg/mL) treated insulin resistant H4IIE cells. Anti-inflammatory effects of both extracts were analyzed in LPS-stimulated RAW264.7 macrophages. Results: Both EE and BE at low doses (25–50 µg/mL) significantly decreased hepatic gluconeogenesis in H4IIE cell line by suppressing the expression of PEPCK and G6Pase. In C2C12 myotubes, both extracts increased the insulin stimulated glucose uptake more effectively than metformin. Both extracts decreased the isoproterenol induced lipolysis in 3T3L1 cell line. Moreover, they also effectively increased the expression of lipoprotein lipase protein level in insulin resistant myotubes at low doses. EE increased the protein level of PPARγ and stimulated the activation AKT in insulin resistant H4IIE and C2C12 cell lines. The results obtained from biochemical assays, mRNA/protein studies and whole genome transcriptome analyses were found to be complementary and provided support for the hypothesis that EE might be biologically active against insulin resistance and act through the inhibition of liver gluconeogenesis and AKT activation. Besides, LPS induced inflammation in RAW264.7 macrophages was mainly inhibited by EE through suppression of iNOS/NO signaling, IL1β and COX-2 genes. HPLC-TOF/MS analysis of EE of L. stoechas mainly resulted in caffeic acid, apigenin, luteolin, rosmarinic acid and its methyl ester, 4-hydroxybenzoic acid, vanillic acid, ferrulic acid and salicylic acid. Conclusion: Data suggest that EE of L. stoechas contains phytochemicals that can be effective in the treatment/prevention of insulin resistance and inflammation. These results validate the traditional use of L. stoechas in Anatolia against several metabolic disorders including metabolic syndrome. © 201

    Consequences of Social and Institutional Setups for Occurrence Reporting in Air Traffic Organizations

    No full text
    Abstract. Deficient safety occurrence reporting by air traffic controllers is an important issue in many air traffic organizations. To understand the reasons for not reporting, practitioners formulated a number of hypotheses, which are difficult to verify manually. To perform automated, formally-based verification of the hypotheses an agent-based modeling and simulation approach is proposed in this paper. This approach allows modeling both institutional (prescriptive) aspects of the formal organization and social behavior of organizational actors. To our knowledge, agent-based organization modeling has not been attempted in air traffic previously. Using such an approach four hypotheses related to consequences of controller team composition in particular organizational contexts were examined. Keywords: Agent-based simulation, organization modeling, formal analysis, air traffic.
    corecore