8,068 research outputs found

    The Correlation Between Galaxy HI Linewidths and K' Luminosities

    Get PDF
    The relationship between galaxy luminosities and rotation rates is studied with total luminosities in the K' band. Extinction problems are essentially eliminated at this band centered at 2.1 micron. A template luminosity-linewidth relation is derived based on 65 galaxies drawn from two magnitude-limited cluster samples. The zero-point is determined using 4 galaxies with accurately known distances. The calibration is applied to give the distance to the Pisces Cluster (60 Mpc) at a redshift in the CMB frame of 4771 km/s. The resultant value of the Hubble Constant is 81 km/s/Mpc. The largest sources of uncertainty arises from the small number of zero-point calibrators at this time at K' and present application to only one cluster.Comment: 13 pages including 5 figures and 2 tables. Accepted for publication in Astrophysical Journa

    Quantifying the value of problem structuring interventions?

    Get PDF
    We review the current work on measuring and evaluating PSM interventions and return to the paradox of trying to determine a specific monetary value. In an attempt to resolve the paradox, we have borrowed freely from economic theory and constructed a scenario where the question of value can be investigated through the effect that a problem structuring intervention will have on information asymmetry in contract formation. This suggests an avenue of research where the value of problem structuring interventions can be investigated empirically. We discuss the difficulties of research design to investigate this question but also the potential benefits.European Commissio

    Internal kinematics of spiral galaxies in distant clusters. Part II. Observations and data analysis

    Full text link
    We have conducted an observing campaign with FORS at the ESO-VLT to explore the kinematical properties of spiral galaxies in distant galaxy clusters. Our main goal is to analyse transformation- and interaction processes of disk galaxies within the special environment of clusters as compared to the hierarchical evolution of galaxies in the field. Spatially resolved MOS-spectra have been obtained for seven galaxy clusters at 0.3<z<0.6 to measure rotation velocities of cluster members. For three of the clusters, Cl0303+17, Cl0413-65, and MS1008-12, for which we presented results including a TF-diagram in Ziegler et al. 2003, we describe here in detail the observations and data analysis. Each of them was observed with two setups of the standard FORS MOS-unit.With typical exposure times of >2 hours we reach an S/N>5 in the emission lines appropriate for the deduction of the galaxies' internal rotation velocities from [OII], Hbeta, or [OIII] profiles. Preselection of targets was done on the basis of available redshifts as well as from photometric and morphological information gathered from own observations, archive data, and from the literature. Emphasis was laid on the definition of suitable setups to avoid the typical restrictions of the standard MOS unit for this kind of observations. In total we assembled spectra of 116 objects of which 50 turned out to be cluster members. Position velocity diagrams, finding charts as well as tables with photometric, spectral, and structural parameters of individual galaxies are presented.Comment: 18 pages, 6 figures, accepted for publication in Astronomy and Astrophysics. A version with full resolution figures can be downloaded from http://www.uni-sw.gwdg.de/~vwgroup/publications.htm

    Elucidating glycosaminoglycan–protein–protein interactions using carbohydrate microarray and computational approaches

    Get PDF
    Glycosaminoglycan polysaccharides play critical roles in many cellular processes, ranging from viral invasion and angiogenesis to spinal cord injury. Their diverse biological activities are derived from an ability to regulate a remarkable number of proteins. However, few methods exist for the rapid identification of glycosaminoglycan–protein interactions and for studying the potential of glycosaminoglycans to assemble multimeric protein complexes. Here, we report a multidisciplinary approach that combines new carbohydrate microarray and computational modeling methodologies to elucidate glycosaminoglycan–protein interactions. The approach was validated through the study of known protein partners for heparan and chondroitin sulfate, including fibroblast growth factor 2 (FGF2) and its receptor FGFR1, the malarial protein VAR2CSA, and tumor necrosis factor-α (TNF-α). We also applied the approach to identify previously undescribed interactions between a specific sulfated epitope on chondroitin sulfate, CS-E, and the neurotrophins, a critical family of growth factors involved in the development, maintenance, and survival of the vertebrate nervous system. Our studies show for the first time that CS is capable of assembling multimeric signaling complexes and modulating neurotrophin signaling pathways. In addition, we identify a contiguous CS-E-binding site by computational modeling that suggests a potential mechanism to explain how CS may promote neurotrophin-tyrosine receptor kinase (Trk) complex formation and neurotrophin signaling. Together, our combined microarray and computational modeling methodologies provide a general, facile means to identify new glycosaminoglycan–protein–protein interactions, as well as a molecular-level understanding of those complexes

    UGC 7388: a galaxy with two tidal loops

    Full text link
    We present the results of spectroscopic and morphological studies of the galaxy UGC7388 with the 8.1-m Gemini North telescope. Judging by its observed characteristics, UGC7388 is a giant late-type spiral galaxy seen almost edge-on. The main body of the galaxy is surrounded by two faint (\mu(B) ~ 24 and \mu(B) ~ 25.5) extended (~20-30 kpc) loop-like structures. A large-scale rotation of the brighter loop about the main galaxy has been detected. We discuss the assumption that the tidal disruption of a relatively massive companion is observed in the case of UGC7388. A detailed study and modeling of the observed structure of this unique galaxy can give important information about the influence of the absorption of massive companions on the galactic disks and about the structure of the dark halo around UGC7388.Comment: 8 pages, 5 figure

    A warped disk model for M33 and the 21-cm line width in spiral galaxies

    Get PDF
    To determine the actual HI distribution and the velocity field in the outermost disk of the spiral galaxy M33, a tilted-ring model is fitted to 21-cm line data taken with the Arecibo Telescope. Since M33 is one of the main calibrators for the extragalactic distance scale derived through the Tully-Fisher relation, the outer disk warping is of interest for a correct determination and deprojection of the galaxy's line width. Even though our best model predicts small effects on the observed line width of M33, we show that similar outer disk warping in galaxies oriented differently along our line of sight could affect the widths considerably. Therefore there may be systematic effects in the determination of the rotation velocities and dynamic masses of spiral galaxies, whose exact value depends also on which method is used for measuring the galaxy's total line width.Comment: 27 pages, ps files only, ApJ in pres

    A List of Galaxies for Gravitational Wave Searches

    Full text link
    We present a list of galaxies within 100 Mpc, which we call the Gravitational Wave Galaxy Catalogue (GWGC), that is currently being used in follow-up searches of electromagnetic counterparts from gravitational wave searches. Due to the time constraints of rapid follow-up, a locally available catalogue of reduced, homogenized data is required. To achieve this we used four existing catalogues: an updated version of the Tully Nearby Galaxy Catalog, the Catalog of Neighboring Galaxies, the V8k catalogue and HyperLEDA. The GWGC contains information on sky position, distance, blue magnitude, major and minor diameters, position angle, and galaxy type for 53,255 galaxies. Errors on these quantities are either taken directly from the literature or estimated based on our understanding of the uncertainties associated with the measurement method. By using the PGC numbering system developed for HyperLEDA, the catalogue has a reduced level of degeneracies compared to catalogues with a similar purpose and is easily updated. We also include 150 Milky Way globular clusters. Finally, we compare the GWGC to previously used catalogues, and find the GWGC to be more complete within 100 Mpc due to our use of more up-to-date input catalogues and the fact that we have not made a blue luminosity cut.Comment: Accepted for publication in Classical and Quantum Gravity, 13 pages, 7 figure

    Mixing Quantum and Classical Mechanics

    Get PDF
    Using a group theoretical approach we derive an equation of motion for a mixed quantum-classical system. The quantum-classical bracket entering the equation preserves the Lie algebra structure of quantum and classical mechanics: The bracket is antisymmetric and satisfies the Jacobi identity, and, therefore, leads to a natural description of interaction between quantum and classical degrees of freedom. We apply the formalism to coupled quantum and classical oscillators and show how various approximations, such as the mean-field and the multiconfiguration mean-field approaches, can be obtained from the quantum-classical equation of motion.Comment: 31 pages, LaTeX2

    An Unbiased Estimate of the Global Hubble Constant in the Region of Pisces-Perseus

    Get PDF
    We obtain an unbiased estimate of the global Hubble constant H0 in the volume of cz<12000km/s in the region of Pisces-Perseus. The Tully-Fisher (TF) relation is applied to a magnitude limited sample of 441 spirals selected from the Arecibo 21cm catalog. The photometry data were calibrated with CCD observations and we achieve 0.13mag for the photometric internal error. We use a maximum likelihood method for the TF analysis. Monte-Carlo simulations demonstrate that our method reproduces a given H0 at the 95% confidence level. By applying the method to our sample galaxies, we obtain the unbiased global Hubble constant H0=65+-2(+20,-14) km/s/Mpc; the first and the second terms represent the internal random error and the external errors, respectively. We also find a good agreement for our H0 with those recently obtained via Cepheid observation, the TF relation and supernovae. Hubble velocities of the spirals inferred from our H0 show no significant systematic difference from those given in the Mark III catalog. The same analysis for H0 is carried out using r-band photometry data of the Pisces-Perseus region given by Willick et al.(1997). We obtain a global H0 which is consistent with that obtained from our B-band analysis. A bulk motion in the Pisces-Perseus region is briefly discussed, based on our calibration of H0. Our r-band TF analysis supports the notion of a coherent streaming motion of the Pisces-Perseus ridge with -200km/s with respect to the CMB, in agreement with most modern studies.Comment: 40 pages, 27 postscript figures, to appear in Ap.J. Figures are included in the tex

    The Tully-Fisher relation at intermediate redshift

    Full text link
    Using the Very Large Telescope in Multi Object Spectroscopy mode, we have observed a sample of 113 field spiral galaxies in the FORS Deep Field (FDF) with redshifts in the range 0.1<z<1.0. The galaxies were selected upon apparent brightness (R<23) and encompass all late spectrophotometric types from Sa to Sdm/Im. Spatially resolved rotation curves have been extracted for 77 galaxies and fitted with synthetic velocity fields taking into account all observational effects from inclination and slit misalignment to seeing and slit width. We also compared different shapes for the intrinsic rotation curve. To gain robust values of V_max, our analysis is focussed on galaxies with rotation curves which extend well into the region of constant rotation velocity at large radii. If the slope of the local Tully-Fisher relation (TFR) is held fixed, we find evidence for a mass-dependent luminosity evolution which is as large as up to 2 mag for the lowest-mass galaxies, but is small or even negligible for the highest-mass systems in our sample. In effect, the TFR slope is shallower at z~0.5 in comparison to the local sample. We argue for a mass-dependent evolution of the mass-to-light ratio. An additional population of blue, low-mass spirals does not seem a very appealing explanation. The flatter tilt we find for the distant TFR is in contradiction to the predictions of recent semi-analytic simulations.Comment: 18 pages, 14 figures, A&A, in press. Section on sample completeness added. Please note that the entire analysis is based on undisturbed, high quality rotation curves! Potential effects of tidal interactions are also discusse
    • …
    corecore