169 research outputs found

    Plant mediated methane efflux from a boreal peatland complex

    Get PDF
    Purpose Aerenchymous plants are an important control for methane efflux from peatlands to the atmosphere, providing a bypass from the anoxic peat and avoiding oxidation in the oxic peat. We aimed to quantify the drivers of aerenchymous peatland species methane transport and the importance of this process for ecosystem-scale methane efflux. Methods We measured seasonal and interspecies variation in methane transport rate per gram of plant dry mass at a boreal fen and bog, which were upscaled to ecosystem-scale plant methane transport. Results Methane transport rate was better explained by plant species, leaf greenness and area than by environmental variables. Leaves appeared to transport methane even after senescence. Contrary to our expectations, both methane transport rate and the proportion of plant transport were lower in the fen (with greater sedge cover) than in the bog site. At the fen and bog, average methane transport rate was 0.7 and 1.8 mg g(-1) d(-1), and the proportion of seasonally variable plant transport was 7-41% and 6-90%, respectively. Species-specific differences in methane transport rate were observed at the ecosystem-scale: Scheuchzeria palustris, which accounted for 16% of the aerenchymous leaf area in the fen and displayed the greatest methane transport rate, was responsible for 45% of the ecosystem-scale plant transport. Conclusion Our study showed that plant species influence the magnitude of ecosystem-scale methane emissions through their properties of methane transport. The identification and quantification of these properties could be the pivotal next step in predicting plant methane transport in peatlands.Peer reviewe

    Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes

    Get PDF
    Northern wetlands with organic soil i.e., mires are significant carbon storages. This key ecosystem service may be threatened by anthropogenic activities and climate change, yet we still lack a consensus on how these major changes affects their carbon sink capacities. We studied how forestry drainage and restoration combined with experimental warming, impacts greenhouse gas fluxes of wetlands with peat. We measured CO2 and CH4 during two and N2O fluxes during one growing season using the chamber method. Gas fluxes were primarily controlled by water table, leaf area and temperature. Land use had a clear impact of on CO2 exchange. Forestry drainage increased respiration rates and decreased field layer net ecosystem CO2 uptake (NEE) and leaf area index (LAI), while at restoration sites the flux rates and LAI had recovered to the level of undrained sites. CH4 emissions were exceptionally low at all sites during our study years due to natural drought, but still somewhat lower at drained compared to undrained sites. Moderate warming triggered an increase in LAI across all land use types. This was accompanied by an increase in cumulative seasonal NEE. Restoration appeared to be an effective tool to return the ecosystem functions of these wetlands as we found no differences in LAI or any gas flux components (PMAX, Reco, NEE, CH4 or N2O) between restored and undrained sites. We did not find any signs that moderate warming would compromise the return of the ecosystem functions related to C sequestration. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Fine-resolution mapping of microforms of a boreal bog using aerial images and waveform-recording LiDAR

    Get PDF
    Boreal bogs are important stores and sinks of atmospheric carbon whose surfaces are characterised by vegetation microforms. Efficient methods for monitoring their vegetation are needed because changes in vegetation composition lead to alteration in their function such as carbon gas exchange with the atmosphere. We investigated how airborne image and waveform-recording LiDAR data can be used for 3D mapping of microforms in an open bog which is a mosaic of pools, hummocks with a few stunted pines, hollows, intermediate surfaces and mud-bottom hollows. The proposed method operates on the bog surface, which is reconstructed using LiDAR. The vegetation was classified at 20 cm resolution. We hypothesised that LiDAR data describe surface topography, moisture and the presence and depth of field-layer vegetation and surface roughness; while multiple images capture the colours and texture of the vegetation, which are influenced by directional reflectance effects. We conclude that geometric LiDAR features are efficient predictors of microforms. LiDAR intensity and echo width were specific to moisture and surface roughness, respectively. Directional reflectance constituted 4-34 % of the variance in images and its form was linked to the presence of the field layer. Microform-specific directional reflectance patterns were deemed to be of marginal value in enhancing the classification, and RGB image features were inferior to LiDAR variables. Sensor fusion is an attractive option for fine-scale mapping of these habitats. We discuss the task and propose options for improving the methodology.Peer reviewe

    Plant diversity and functional trait composition during mire development

    Get PDF
    During succession, plant species composition undergoes changes that may have implications for ecosystem functions. Here we aimed to study changes in plant species diversity, functional diversity and functional traits associated with mire development. We sampled vegetation from 22 mires on the eastern shore of the Gulf of Bothnia (west coast of Finland) that together represent seven different time steps along a mire chronosequence resulting from post-glacial rebound. This chronosequence spans a time period of almost 2500 years. Information about 15 traits of vascular plants and 17 traits of mosses was collected, mainly from two different databases. In addition to species richness and Shannon diversity index, we measured functional diversity and community weighted means of functional traits. We found that plant species diversity increased from the early succession stages towards the fen-bog transition. The latter stage also has the most diverse surface structure, consisting of pools and hummocks. Functional diversity increased linearly with species richness, suggesting a lack of functional redundancy during mire succession. On the other hand, Rao's quadratic entropy, another index of functional diversity, remained rather constant throughout the succession. The changes in functional traits indicate a trade-off between acquisitive and conservative strategies. The functional redundancy, i.e. the lack of overlap between similarly functioning species, may indicate that the resistance to environmental disturbances such as drainage or climate change does not change during mire succession. However, the trait trade-off towards conservative strategy, together with the developing microtopography of hummocks and hollows with strongly differing vegetation composition, could increase resistance during mire succession.Peer reviewe

    Small spatial variability in methane emission measured from a wet patterned boreal bog

    Get PDF
    We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAI(TOT)) and leaf area of aerenchymatous plant species (LAI(AER)). Methane emissions ranged from -309 to 1254 mg m(-2) d(-1). Although methane fluxes increased with increasing peat temperature, LAI(TOT) and LAI(AER), they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAI(AER) and LAI(TOT) in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.Peer reviewe

    Warming impacts on boreal fen CO2 exchange under wet and dry conditions

    Get PDF
    Abstract Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub-arctic sedge fen carbon dioxide (CO2) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw-down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange. This article is protected by copyright. All rights reserved.Peer reviewe

    Greenhouse gas emission factors associated with rewetting of organic soils

    Get PDF
    Drained organic soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils may reduce GHG emissions and could also create suitable conditions for return of the carbon (C) sink function characteristic of undrained organic soils. In this article we expand on the work relating to rewetted organic soils that was carried out for the 2014 Intergovernmental Panel on Climate Change (IPCC) Wetlands Supplement. We describe the methods and scientific approach used to derive the Tier 1 emission factors (the rate of emission per unit of activity) for the full suite of GHG and waterborne C fluxes associated with rewetting of organic soils. We recorded a total of 352 GHG and waterborne annual flux data points from an extensive literature search and these were disaggregated by flux type (i.e. CO2, CH4, N2O and DOC), climate zone and nutrient status. Our results showed fundamental differences between the GHG dynamics of drained and rewetted organic soils and, based on the 100 year global warming potential of each gas, indicated that rewetting of drained organic soils leads to: net annual removals of CO2 in the majority of organic soil classes; an increase in annual CH4 emissions; a decrease in N2O and DOC losses; and a lowering of net GHG emissions. Data published since the Wetlands Supplement (n = 58) generally support our derivations. Significant data gaps exist, particularly with regard to tropical organic soils, DOC and N2O. We propose that the uncertainty associated with our derivations could be significantly reduced by the development of country specific emission factors that could in turn be disaggregated by factors such as vegetation composition, water table level, time since rewetting and previous land use history

    Response of vegetation and soil biological properties to soil deformation in logging trails of drained boreal peatland forests

    Get PDF
    In the boreal region, peatland forests are a significant resource of timber. Under pressure from a growing bioeconomy and climate change, timber harvesting is increasingly occurring over unfrozen soils. This is likely to cause disturbance in the soil biogeochemistry. We studied the impact of machinery-induced soil disturbance on the vegetation, microbes, and soil biogeochemistry of drained boreal peatland forests caused by machinery traffic during thinning operations. To assess potential recovery, we sampled six sites that ranged in time since thinning from a few months to 15 years. Soil disturbance directly decreased moss biomass and led to an increase in sedge cover and a decrease in root production. Moreover, soil CO2 production potential, and soil CO2 and CH4 concentrations were greater in recently disturbed areas than in the control areas. In contrast, CO2 and CH4 emissions, microbial biomass and structure, and the decomposition rate of cellulose appeared to be uncoupled and did not show signs of impact. While the impacted properties varied in their rate of recovery, they all fully recovered within 15 years covered by our chronosequence study. Conclusively, drained boreal peatlands appeared to have high biological resilience to soil disturbance caused by forest machinery during thinning operations.publishedVersionPeer reviewe

    Structural Insight into Host Recognition by Aggregative Adherence Fimbriae of Enteroaggregative Escherichia coli

    Get PDF
    AVZ is supported by the Finnish Academy (grant 273075; http://sciencenordic.com/partner/academy-finland). The EACEA (http://eacea.ec.europa.eu) supports NP for an Erasmus Mundus scholarship. SM is supported by the Wellcome Trust (Senior Investigator Award 100280, Programme grant 079819; equipment grant 085464; http://www.wellcome.ac.uk)) and the Leverhulme Trust (RPG-2012-559; http://www.leverhulme.ac.uk). JPN and AAB are supported by a US Public Health Service grant (AI-033096; www.usphs.gov). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore