41 research outputs found

    Bacterial Bio-indicators of Marcellus Shale Activities in Pennsylvania: A Molecular Ecology Survey

    Get PDF
    The practice of hydraulic fracking has increased over the years especially in Pennsylvania where most of the subterraneous gas-rich Marcellus Shale formations are located. Our previous work showed that headwater streams in proximity to hydraulic fracking operations have significantly different bacterial assemblages as compared to un-impacted streams in central PA. Aquatic bacterial communities are of great importance because they are often the ‘first-responders’ to environmental perturbations. We are interested in which bacteria become enriched, as this might serve as robust biomarkers of fracking, and can potentially biodegrade constituents of fracking fluids. In this study, we plan to expand upon our previous work to identify additional sentinel bacterial taxa in other areas in PA (Northeast and Southwest) heavily impacted by fracking. Water and sediment samples have been collected from Northern Pennsylvania (n=31) and Southwestern (n=11) regions upstream and downstream of fracking activities. Bacterial community profiles of these samples were generated via high-throughput sequencing of the 16S rRNA, a robust phylogenetic marker for bacterial identification. The data generated provide a snapshot of all bacteria taxa present and their relative abundance. Thus, differences in bacterial community structure between impacted and un-impacted environments can help glean which bacterial taxa are responding to environmental perturbations associated with fracking. This research can help us generate a list of potential bioindicators of nascent fracking activities and can be used to help track impacts and bioremediation potential within environmental scenarios

    Historian museon toiminnan tulevaisuuskuvat

    Get PDF

    Historian museon toiminnan tulevaisuuskuvat

    Get PDF
    Turun museokeskus tilasi Tulevaisuuden tutkimuskeskuksesta Turun yliopistosta yhden osallisuusverstaan hankepäällikkö Joanna Kurthin vetämälle Historian museota valmisteltavalle Historian museo Tukuun -hankkeelle. Verstaassa tuotettiin ideoita Historian museon tulevaan toimintaan, yhteistyöhön, toimintamalleihin ja liiketoiminta-ajatteluun. Tavoitteena oli kannustaa osallistujia ideoimaan museon mahdollisia toiminnallisia rooleja ja toimintatapoja nykyisessä globaalissa murroksessa ja sen tuomissa globaaleissa haasteissa. Historian museon valmistelutyöhön halutaan osallistaa monenlaisia toimijoita, jotta museo pystyisi vastaamaan muuttuvan ajan haasteisiin tulevia yhteistyöverkostoja ja toimintaa rakentaessaan. Verstaan osallistujissa oli sekä museomaailman, koulutussektorin, yritysmaailman että kiinnostuneiden kansalaisten edustajia kaikkiaan noin 50 henkeä. Osallisuusverstas toteutettiin tätä tarkoitusta varten sovelletulla tulevaisuusverstasmenetelmällä. Osallisuusverstaan ryhmät tuottivat ajatuksia laajasta joukosta erilaisia toimijoita, jotka voivat Historian museon valmistuttua ja jo valmisteluvaiheessa toimia yhdessä ja erilaisissa yhteistyöverkostoissa museon kanssa. Ajatuksissa on mukana sekä eri-ikäisiä yksittäisiä ihmisiä että erilaisissa instituutioissa, organisaatioissa, yrityksissä sekä kulttuurin ja taiteen vapaalla kentällä toimivia ihmisiä. He voivat toimia museon kanssa ammatillisessa mielessä ja arkielämän monissa eri rooleissa, joiden kautta yhteistyöverkostoon saadaan tietoa, maailmankuvien pohdintaa, oppimista ja kasvamista, leikittelyä ja kuvittelua, vaikuttavuutta ja uudenlaista muutoksen tuottamista esimerkiksi maailman kriiseissä. Tulevaisuuskuvat tuovat vastauksia siihen, minkälainen yhteistoiminnallinen rooli museolla voisi olla 2040-luvun alkaessa. Osallisuusverstaissa ryhmät valitsivat käsiteltäviksi -globaalin, keskinäisjännitteisen maailman ja sen rinnalla yhden yhteisen maailman -paikallisuuteen keskittymisen ja sen kanssa vastakkaisen globalisaation -teknologisen kehityksen siivittämän virtuaalimaailman -ympäristökriisiin ja ilmastonmuutokseen sopeutumisen ja niistä uudenlaisten kulttuuristen ja yhteiskunnallisten toimintamuotojen oppimisen. Jokaisesta näistä on vaihtelevasti piirteitä kussakin tulevaisuuskuvassa. Historian museon neljä tulevaisuuskuvaa rakentuvat erilaisten toiminnallisten roolien mukaisiksi seuraavasti: 1) Museo ajassa ja tilassa liikkuttajana, missä keskeisenä tekijänä ovat pitkälle kehittyneen keinotodellisuuden ja lisätyn todellisuuden tarjoamat tekniset mahdollisuudet sekä verkkoympäristössä että museorakennuksessa. 2) Museo oppimisen, pohtimisen ja tutkimisen paikkana, missä keskeistä on museon rooli tieteellisen tiedon luotettavana tuottajana ja kokemuksellisen ja toiminnallisen oppimisympäristön tarjoajana. 3) Museo vaikuttajana, jossa museo toimii kriisiytyneessä maailmassa valtiovallan ja globaalien kriisinhallintajoukkojen tukena sopeuttamassa ihmisiä maailman rajuihin muutoksiin. 4) Museo erilaisuuden kohtaamisen, myötäelämisen ja yhteisyyden luomisen tilana, missä museo tarjoaa inhimillisyysmuseona kaikille avoimen tilan empaattisuuden ja myötäelämisen oppimi-seen paitsi ihmisten kesken, myös koko elonpiirissä

    Silva Fennica. A quarterly journal of forest science. Contents Vol. 30, 1996.

    Get PDF

    A Roadmap until 2030 and first action plan for the Peruvian agri-food sector, focusing on Andean native crops : results from the 3rd and 4th Futures Workshops of the Pecolo Project

    Get PDF
    PECOLO, or Native crops for sustainable and innovative food futures in Peru and Colombia, was a collaborative project involving the University of Turku, Finland (UTU), Universidad Nacional Agraria La Molina, Peru (UNALM) and Universidad el Bosque, Colombia (UEB). From UTU, Finland Futures Research Centre (FFRC) coordinated the project. In addition, the Functional Foods Forum and Department of Biochemistry of the University of Turku were also participating in the project. One of the key focus areas of the PECOLO project was the development of innovation environments around native Andean crops. Futures research and foresight methodologies were used as novel tools for developing innovation environments in cooperation with academic, public and private sector organizations and NGOs. This is the second of two publications concerning Peru that have been produced based on the results of the PECOLO project’s four-stage futures process. The first, A Scenario for the Desirable Future of the Peruvian Agri-Food Sector 2030, Focusing on Andean Native Crops: Results from the 1st and 2nd Futures Workshops of the PECOLO Project , describes the methods and results of the first two steps of the futures process. The outcome was a futures table describing a set of three alternative futures for the Peruvian agri-food sector that reconsider the potential of Andean crops, as well as a scenario narrative for the most desirable future. This second publication covers the work that took place during the project’s third and fourth futures workshops. The third workshop established a vision for 2030 based on the desirable scenario of the second workshop, and a roadmap for the Peruvian agri-food sector with a special focus on Andean native crops. The fourth and final workshop elaborated concrete actions that can and should be taken by stakeholders in the first implementation period, from 2020–2022, in order to begin to move toward these common goals. The PECOLO project was funded by the Ministry for Foreign Affairs of Finland between 2017–2019 under the HEI-ICI Programme (Higher Education Institutions – Institutional Capacity-building Instrument)

    Sphagnum cover in undrained, drained and rewetted boreal spruce swamp forests

    No full text
    Sphagnum cover results from a vegetation survey conducted in 2009 (sphagcover_veg). Estimated Sphagnum cover of the growth measurement patches in 2011-2012 (sphagcover_patch). Vegetation survey results first published in: Maanavilja, L., Aapala, K., Haapalehto, T., Kotiaho, J.S. & Tuittila, E. (2014) Impact of drainage and hydrological restoration on vegetation structure in boreal spruce swamp forests. Forest Ecology and Management, 330, 115-125

    Chamber measurements of methane transport through individual aerenchymous plants at a boreal fen and a bog

    No full text
    The presented dataset contains chamber measurements of methane transport (mg CH₄ g dry plant mass-1 day-1) through individual aerenchymous peatland plants and the ancillary data for these measurements. Chamber measurements were performed for 7 plant species at two peatland sites, an oligotrophic fen and an ombrotrophic bog part of Siikaneva peatland complex in Southern Finland (61.8249° N, 24.1390° E, altitude 170 m a.s.l.) , during growing seasons 2013 and 2014 (between 1st of May and 28th of October). The ancillary data contains measurements of water table depth from the moss surface, air and peat temperature during the measurement as well as leaf area, dry mass of plant material, specific leaf area, number of leaves and the proportion of brown leaves in each sample that was measured. The dataset was collected to quantify the impact of plant species, plant properties and environmental factors on methane transport through aerenchymous plants. Plant CH₄ transport rate was measured using custom-made cylinder-shaped chambers that varied in volume between 0.7 and 5.0 liters. A plant sample of 2–104 leaves (depending on the growth form of the measured plant) belonging to the same species was separated from the peat and moss underneath by two plexiglass plates that were attached together with a hinge and had a smooth rubber seal between them to avoid compression of the plant. The proportion of green leaves in the sample varied from 0 to 100 % depending on the phase of the growing season. The sample was then covered with an opaque plastic chamber that was sealed with the plate by a smooth rubber seal attached to the bottom of the chamber. Airtightness of the system was ensured by tightening a belt that extended from one plate to the other over the chamber. Finally, a rubber stopper was used to seal a vent hole in the top of the chamber. Each plant sample was measured for 35 minutes, during which four 20 ml air samples were drawn from the chamber with a syringe through the rubber stopper in the top of the chamber at 5, 15, 25 and 35 minutes after chamber closure. The air samples were then injected into evacuated 12 ml glass vials (Labco Limited, UK). Simultaneous to the flux measurements, temperatures in the chamber (air) and peat at 5, 15 and 30 cm depth were recorded. WT was measured from a perforated plastic tube installed into the peat next to the sample after the WT level in the tube had stabilized for at least 30 minutes. After the flux measurement, the plant sample was cut with scissors and transported to the laboratory in a plastic bag. In each plant sample, the number of leaves was counted, the leaf area of brown and green leaf parts was measured with a scanner, and the dry weight was obtained for brown and green leaf parts separately after oven drying the sample at 60 °C for 24 hours. Using these data, specific leaf area (SLA, m²/g) was calculated for each sample. CH₄ concentration in the glass vials was analyzed with an Agilent Technologies 7890A gas chromatograph and Gilson GX-271 liquid handler. The CH₄ flux was calculated as the linear change in CH~4~ concentration in relation to time, chamber volume and temperature. Nonlinear changes in CH₄ concentration that were visually detected, were surmised to have resulted from a leak in the chamber or in the vial and were excluded from the analysis. In total 6 % of the measurements were excluded from the final dataset due to such nonlinearities
    corecore