124 research outputs found

    A Mycobacterial Enzyme Essential for Cell Division Synergizes with Resuscitation-Promoting Factor

    Get PDF
    The final stage of bacterial cell division requires the activity of one or more enzymes capable of degrading the layers of peptidoglycan connecting two recently developed daughter cells. Although this is a key step in cell division and is required by all peptidoglycan-containing bacteria, little is known about how these potentially lethal enzymes are regulated. It is likely that regulation is mediated, at least partly, through protein–protein interactions. Two lytic transglycosylases of mycobacteria, known as resuscitation-promoting factor B and E (RpfB and RpfE), have previously been shown to interact with the peptidoglycan-hydrolyzing endopeptidase, Rpf-interacting protein A (RipA). These proteins may form a complex at the septum of dividing bacteria. To investigate the function of this potential complex, we generated depletion strains in M. smegmatis. Here we show that, while depletion of rpfB has no effect on viability or morphology, ripA depletion results in a marked decrease in growth and formation of long, branched chains. These growth and morphological defects could be functionally complemented by the M. tuberculosis ripA orthologue (rv1477), but not by another ripA-like orthologue (rv1478). Depletion of ripA also resulted in increased susceptibility to the cell wall–targeting Ξ²-lactams. Furthermore, we demonstrate that RipA has hydrolytic activity towards several cell wall substrates and synergizes with RpfB. These data reveal the unusual essentiality of a peptidoglycan hydrolase and suggest a novel protein–protein interaction as one way of regulating its activity

    Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein

    Get PDF
    The principal virulence determinant of Mycobacterium tuberculosis (Mtb), the ESX-1 protein secretion system, is positively controlled at the transcriptional level by EspR. Depletion of EspR reportedly affects a small number of genes, both positively or negatively, including a key ESX-1 component, the espACD operon. EspR is also thought to be an ESX-1 substrate. Using EspR-specific antibodies in ChIP-Seq experiments (chromatin immunoprecipitation followed by ultra-high throughput DNA sequencing) we show that EspR binds to at least 165 loci on the Mtb genome. Included in the EspR regulon are genes encoding not only EspA, but also EspR itself, the ESX-2 and ESX-5 systems, a host of diverse cell wall functions, such as production of the complex lipid PDIM (phenolthiocerol dimycocerosate) and the PE/PPE cell-surface proteins. EspR binding sites are not restricted to promoter regions and can be clustered. This suggests that rather than functioning as a classical regulatory protein EspR acts globally as a nucleoid-associated protein capable of long-range interactions consistent with a recently established structural model. EspR expression was shown to be growth phase-dependent, peaking in the stationary phase. Overexpression in Mtb strain H37Rv revealed that EspR influences target gene expression both positively or negatively leading to growth arrest. At no stage was EspR secreted into the culture filtrate. Thus, rather than serving as a specific activator of a virulence locus, EspR is a novel nucleoid-associated protein, with both architectural and regulatory roles, that impacts cell wall functions and pathogenesis through multiple genes

    Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors

    Get PDF
    Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p

    Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence

    Get PDF
    Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis–infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria

    Complexity and dynamics of the winemaking bacterial communities in berries, musts, and wines from apulian grape cultivars through time and space

    Get PDF
    Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS) to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.Peer ReviewedPostprint (published version

    Characterization of a Clp Protease Gene Regulator and the Reaeration Response in Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis (MTB) enters a non-replicating state when exposed to low oxygen tension, a condition the bacillus encounters in granulomas during infection. Determining how mycobacteria enter and maintain this state is a major focus of research. However, from a public health standpoint the importance of latent TB is its ability to reactivate. The mechanism by which mycobacteria return to a replicating state upon re-exposure to favorable conditions is not understood. In this study, we utilized reaeration from a defined hypoxia model to characterize the adaptive response of MTB following a return to favorable growth conditions. Global transcriptional analysis identified the ∼100 gene Reaeration Response, induced relative to both log-phase and hypoxic MTB. This response includes chaperones and proteases, as well as the transcription factor Rv2745c, which we characterize as a Clp protease gene regulator (ClgR) orthologue. During reaeration, genes repressed during hypoxia are also upregulated in a wave of transcription that includes genes crucial to transcription, translation and oxidative phosphorylation and culminates in bacterial replication. In sum, this study defines a new transcriptional response of MTB with potential relevance to disease, and implicates ClgR as a regulator involved in resumption of replication following hypoxia

    The Enigmatic Esx Proteins:Looking Beyond Mycobacteria

    Get PDF
    Bacteria export proteins across membranes using a range of transport machineries. Type VII secretion systems (T7SSs), originally described in mycobacteria, are now known to be widespread across diverse bacterial phyla. Recent studies have characterized secretion components and mechanisms of type VII secretion in pathogenic and environmental bacteria. A variety of functions have been attributed to T7SS substrates, including interactions with eukaryotes and with other bacteria. Here, we evaluate the growing body of knowledge on T7SSs, with focus on the nonmycobacterial systems, reviewing their phylogenetic distribution, structure and function in diverse settings

    Interaction and Modulation of Two Antagonistic Cell Wall Enzymes of Mycobacteria

    Get PDF
    Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB), a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA), an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1), as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein–protein interactions between enzymes with antagonistic functions
    • …
    corecore