40 research outputs found

    Mentaal welbevinden van de jeugd: lessen uit de coronacrisis: Een nieuw overzicht van de onderzoeksliteratuur

    Get PDF
    Dit rapport biedt een overzicht van onderzoeken naar de belangrijkste gevolgen van de coronacrisis en daaraan gerelateerde maatregelen op het mentaal welbevinden van kinderen, jongeren en jongvolwassenen in Nederland. Doel is ook om de bevindingen uit alle beschikbare onderzoeken door jongeren en onderzoekers gezamenlijk te laten duiden. We kijken in dit rapport naar verschillende aspecten van mentaal welbevinden. Zoals kwaliteit van leven, depressie, angst en psychosomatische klachten, waaronder stress. Ook kijken we naar wat er tijdens de coronacrisis gebeurde in de sociale omgeving van jongeren. Bijvoorbeeld in het gezin, onder leeftijdsgenoten, hun vrijetijdsbesteding, op school en werk. Daarnaast beschouwen we hoe het toekomstperspectief van jongeren zich heeft ontwikkeld tijdens de coronacrisis en hoe jongeren zelf aankijken tegen het coronabelei

    Past temperature reconstructions from deep ice cores: relevance for future climate change

    Get PDF
    Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, about 400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP) and Antarctic (Dome C) ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core-based temperature reconstructions. In Antarctica, the CO2-induced warming lies clearly beyond the natural rhythm of temperature fluctuations. In Greenland, the CO2-induced warming is as fast or faster than the most rapid temperature shifts of the last ice age. The magnitude of polar temperature change in response to a quadrupling of atmospheric CO2 is comparable to the magnitude of the polar temperature change from the Last Glacial Maximum to present-day. When forced by prescribed changes in ice sheet reconstructions and CO2 changes, climate models systematically underestimate the glacial-interglacial polar temperature change

    Modeled Influence of Land Ice and CO2 on Polar Amplification and Paleoclimate Sensitivity During the Past 5 Million Years

    Get PDF
    Polar amplification and paleoclimate sensitivity (S) have been the subject of many paleoclimate studies. While earlier studies inferred them as single constant parameters of the climate system, there are now indications that both are conditioned by the type of forcing. Moreover, they might be affected by fast feedback mechanisms that have different strengths depending on the background climate. Here we use the intermediate complexity climate model CLIMBER-2 to study the influence of land ice and CO2 on polar amplification and S. We perform transient 5-Myr simulations, forced by different combinations of insolation, land ice, and CO2. Our results provide evidence that land ice and CO2 changes have different effects on temperature, both on the global mean and the meridional distribution. Land ice changes are mainly manifested in the high latitudes of the Northern Hemisphere. They lead to higher northern polar amplification, lower southern polar amplification, and lower S than more homogeneously distributed CO2 forcing in CLIMBER-2. Furthermore, toward colder climates northern polar amplification increases and consequently southern polar amplification decreases, due to the albedo-temperature feedback. As an effect, a global average temperature change calculated from high-latitude temperatures by using a constant polar amplification would lead to substantial errors in our model setup. We conclude that to constrain feedback strengths and climate sensitivity by paleoclimate data, the underlying forcing mechanisms and background climate states have to be taken into consideration

    Milankovitch-paced erosion in the southern Central Andes

    No full text
    It has long been hypothesized that climate can modify both the pattern and magnitude of erosion in mountainous landscapes, thereby controlling morphology, rates of deformation, and potentially modulating global carbon and nutrient cycles through weathering feedbacks. Although conceptually appealing, geologic evidence for a direct climatic control on erosion has remained ambiguous owing to a lack of high-resolution, long-term terrestrial records and suitable field sites. Here we provide direct terrestrial field evidence for long-term synchrony between erosion rates and Milankovitch-driven, 400-kyr eccentricity cycles using a Plio-Pleistocene cosmogenic radionuclide paleo-erosion rate record from the southern Central Andes. The observed climate-erosion coupling across multiple orbital cycles, when combined with results from the intermediate complexity climate model CLIMBER-2, are consistent with the hypothesis that relatively modest fluctuations in precipitation can cause synchronous and nonlinear responses in erosion rates as landscapes adjust to ever-evolving hydrologic boundary conditions imposed by oscillating climate regimes
    corecore