165 research outputs found

    Dysregulation of POPDC1 promotes breast cancer cell migration and proliferation

    Get PDF
    This work was funded by the University Of Aberdeen College Of Life Sciences and Medicine alongside the University of Aberdeen Elphinstone Scholarship Scheme. The authors thank Prof. Thomas Brand and Dr Roland Schindler at Imperial College London for the plasmid constructs and collaborative efforts. Finally, authors acknowledge Dr Jin Pu at the University of Aberdeen, for sharing the MCF10A and MDA231 cells.Peer reviewedPublisher PD

    If You Make it Free, Will They Come? Using a Physical Activity Accessibility Model to Understand the Use of a Free Children’s Recreation Pass

    Get PDF
    Background: Children’s sedentary lifestyles and low physical activity levels may be countered using population-level interventions. This study examines factors influencing the use of a free community-wide physical activity access pass for grade 5 students (G5AP). Methods: A natural experiment with longitudinal data collection. A sample of 881 children completed the 9-month follow-up survey self-reporting where they used the G5AP. Two analyses were conducted: Getis-Ord GI* geographic cluster analysis of the spatial distribution of users, and logistic regression examining the relationship between use and accessibility (informational, economic, and geographic) and mobility options, while accounting for intrapersonal and interpersonal factors. Results: Overall, 44.9% of children used the G5AP with clusters of high use in urban areas and low use in the suburbs. Other factors significantly related to G5AP included gender (girls), informational accessibility (active recruitment), economic accessibility (median household income), geographic accessibility (facilities within 1.6 km of home), and mobility options (access to Boys & Girls Club bus). Conclusions: This study found that a diverse population of children used the G5AP. To continue being successful, community-based physical activity interventions need to ensure that the intervention increases geographic, economic, and informational accessibility and provides mobility options that are available to the target population

    A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    Get PDF
    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments. v2 includes reviewer changes and longer literature revie

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    Synthesis and characterization of Zr2Al3C4 thin films

    Get PDF
    Zr2Al3C4 is an inherently nanolaminated carbide where layers of ZrC alternatewith layers of Al3C2. Characterization of bulk samples has shown it has improved damage tolerance and oxidation resistance compared to its binary counterpart ZrC. Though a potential candidate for coatings applied for use in harsh environments, thin films of Zr2Al3C4 have not been reported.We have synthesized epitaxial Zr2Al3C4 thin films by pulsed cathodic arc deposition from three elemental cathodes, and have studied the effect of incident atomic flux ratio, deposition temperature, and choice of substrate on material quality. X-ray diffraction analysis showed that Zr2Al3C4 of the highest structural quality was obtained for growth on 4 H-SiC(001) substrate at 800 ^deg;C. Also, suppression of competing phases could be achieved on ĂĄ-Al2O3(001) at elevated substrate temperatures. Very similar growth behavior to that of the well-known Mn+1AXn phases - Al supersaturation, binary carbide intergrowth and high sensitivity to choice of substrate - indicates a strong connection between the two families ofmaterials, despite their differences in structure and in chemistry

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A&gt;T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
    • 

    corecore