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Abstract 

Zr2Al3C4 is an inherently nanolaminated carbide where layers of ZrC alternate with layers of 

Al3C2. Characterization of bulk samples has shown it has improved damage tolerance and 

oxidation resistance compared to its binary counterpart ZrC. Though a potential candidate for 

coatings applied for use in harsh environments, thin films of Zr2Al3C4 have not been reported. We 

have synthesized epitaxial Zr2Al3C4 thin films by pulsed cathodic arc deposition from three 

elemental cathodes, and have studied the effect of incident atomic flux ratio, deposition 

temperature, and choice of substrate on material quality. X-ray diffraction analysis showed that 

Zr2Al3C4 of the highest structural quality was obtained for growth on 4 H–SiC(001) substrate at 

800 °C. Also, suppression of competing phases could be achieved on α-Al2O3(001) at elevated 

substrate temperatures. Very similar growth behavior to that of the well-known Mn+1AXn phases – 

Al supersaturation, binary carbide intergrowth and high sensitivity to choice of substrate – indicates 

a strong connection between the two families of materials, despite their differences in structure and 

in chemistry. 
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1. Introduction 

The binary transition metal carbides (MC, where M is a transition metal) have been thoroughly 

studied since the 1930s, in part motivated by attention from industry [1]. MCs are generally harder, 

ore refractory, and more chemically stable than their metallic counterparts, while remaining 

electrically and thermally conductive, but they are brittle [2]. Today, they are commonly utilized 

as reinforcement in composites (e.g.WC–Co [3]) and protective coatings (e.g. TiC, NbC, CrC [4]). 

In order to improve the performance of binary carbides at elevated temperature, a third component 

can be introduced, forming ternary transition metal carbides (MAC, where A is typically a group 

13–16 element). Commonly, the A element is Al, as in Ti2AlC, Ti3AlC2 and Zr2Al3C4, causing 

improvement in high temperature oxidation resistance by the formation of a continuous and dense 

oxygen diffusion barrier of alumina on the surface [5–10]. 

A class of ternary and quaternary carbides have inherently nanolaminated structures with 

alternating transition metal carbide layers (MC) and A-element-containing layers (A or AC) along 

one crystal axis [11]. They have several different formulas Mn+1ACn, (MC)n(A3C2), and 

(MC)n(A4C3), where n is 1–3 [12,13], for example Ti3AlC2, (ZrC)2(Al3C2) or Zr2Al3C4, and 

(HfC)3(Al4C3) or Hf3Al4C6 [14–16]. They commonly have superior mechanical properties, such 

as higher tolerance against damage and increased machinability, to their binary carbide 

counterparts [14,17,18].These properties originate from their layered structures. 

Zr2Al3C4 was first reported in bulk form in 1980 by Schuster and Nowotny [19], but detailed 

studies on properties of this phase were not conducted until the 2000s. The material exhibits high 

electrical conductivity (1.10 μΩm) along with higher stiffness and toughness than ZrC [20] and an 

improved high temperature oxidation resistance. Because of these properties, Zhou et al. proposed 
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Zr2Al3C4 as a potential candidate for applications such as reinforcing composite for metals [21] 

and protective conducting coatings in harsh environments [13]. However, thin film synthesis of 

inherently nanolaminated phases in the Zr–Al–C system, including Zr2Al3C4, has not yet been 

reported. 

Here, we report synthesis of Zr2Al3C4 thin films by pulsed cathodic arc deposition. Samples 

deposited with different Al to Zr and C to Zr incident atomic flux ratios, on different substrates (α-

Al2O3(001), MgO(111), 4 H–SiC(001), and yttria-stabilized-zirconia (YSZ) (111)), and at 

different substrate temperatures (700 °C, 750 °C, 800 °C and 900 °C) were investigated. Epitaxial 

growth of Zr2Al3C4 was achieved on 4 H–SiC substrates, and suppression of competing phases 

could also be achieved on α-Al2O3 at elevated substrate temperatures. 

2. Experimental details 

2.1 Thin film synthesis 

All depositions were made in a high current pulsed cathodic arc system equipped with three 

cylindrical cathodes (Ø = 25 mm), slightly tilted to allow plasma flux into a copper solenoid filter 

for macroparticle removal. This method has previously been used for synthesis of laminated 

carbides [22–24], see Ref. [25] for details about the deposition system. Each cathode is surrounded 

by a cylindrical anode and is triggered using a center-positioned tungsten trigger pin electrically 

insulated from the cathode. During deposition, the cathodes are fired separately, at a base pressure 

of around 10−7 mbar. 

The samples were deposited from three elemental cathodes, Zr, Al and C, with purities of 99.9%, 

99.99% and 99.99%, respectively (Testbourne Ltd.), using an arc current of 1.5 kA and a pulsed 



4 
 

frequency of 11 Hz. The width of one pulse for the Zr, Al and C cathodes were 350, 250 and 500 

μs, respectively. 

The incoming atomic flux ratio was controlled by triggering the three cathodes in a repeating pulse 

sequence and varying the number of pulses to each cathode in the sequence. In initial calibrations 

the deposition rate from each cathode was determined by attaining density and thickness from X-

ray reflectivity (XRR) measurements on samples deposited on Si(100) substrates at room 

temperature. This information was used to determine the atomic flux ratio incident on the substrate 

(or the ‘flux ratio’) for a chosen pulse sequence. 

The substrates used in this work were α-Al2O3(001), MgO(111), 4 H–SiC(001), and yttria-

stabilized zirconia (111) (YSZ, Zr0.92Y0.08O2). All substrates were cleaned in an ultrasonic bath for 

10 min each in acetone then isopropanol, and were blown dry with N2. The substrate was kept for 

15 min at the deposition temperature before material synthesis to ensure a uniform temperature 

over the sample. One thin film sample, presented in Section 3.1, was deposited on 4 H–SiC(001) 

with a thickness of about 200 nm for better statistics in composition analysis, see Section 2.2. The 

other samples presented were about 20 nm thick according to deposition rate calibration prior to 

the sample deposition. 

2.2 Thin film characterization 

XRR and X-ray diffraction (XRD) patterns were acquired in an X-ray diffractometer (Empyrean, 

PANalytical B.V.) using CuKα radiation and a Ge(220) crystal hybrid monochromator on the 

incident side and a parallel plate collimator (PPC) on the receiving side. An extra equatorial 0.1 

mm collimator slit was inserted between the PPC and the detector when acquiring XRR patterns, 

which later were fitted within X'Pert Reflectivity software (Ver. 1.3, PANalytical B.V.) to obtain 
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the density and thickness of the calibration samples. XRD was used for phase identification and 

analysis of crystal orientation. 

The microstructure of the films was characterized using high resolution transmission electron 

microscopy (HR-TEM) on cross cross sectional samples in a FEI Tecnai G2 microscope operated 

with an acceleration voltage of 200 kV. 

Time-of-flight elastic recoil detection analysis (TOF-ERDA) was performed on the thicker sample 

to obtain an average composition from a larger sampling volume and a more reliable quantification 

of the lighter elements, such as C, O and N. 

3. Results and Discussion 

3.1 Characterization of Zr2Al3C4 thin films 

Fig. 1(a) is a θ–2θ XRD pattern of a Zr2Al3C4 thin film deposited on 4 H–SiC(001) at 800 °C with 

flux ratio (Al/Zr) = 5.75 and (C/Zr) = 1.67. The six diffraction peaks labeled s in Fig. 1 (a) are the 

basal planes (00 l) of the SiC substrate [26]. The eight peaks at around 7.9°, 15.9°, 24.2°, 32.3°, 

40.7°, 58.4°, 67.7° and 77.3° share the same least common multiple of interplanar spacing (d 

spacing) ~11.1 Å, and can be assigned to diffraction from the basal planes (00 l) of the Zr2Al3C4 

phase with a c parameter of ~22.2 Å [27]. The additional peaks at ~33.0° and ~69.1° are the 111 

and 222 peaks of cubic ZrCx (0.67 ≤ x ≤ 1.0) [28]. The inset of Fig. 1(a) is an in-plane (ψ ~ 90°) 

θ–2θ XRD pattern over the range 2θ = 52–62° showing 110 diffraction of Zr2Al3C4 and the 

substrate. From the position of Zr2Al3C4(110) its a parameter can be determined to be ~3.34 Å, 

while the asymmetric shape of the peak indicates an overlap of a ZrCx 220 peak with lower intensity. 

Fig. 1 (b) shows φ-scans acquired at 2θ = 65.702°, 53.040° and 58.560° and at fixed tilt angle ψ 

from the surface normal of the sample, with ψ = 68.50°, 55.50° and 63.00°, which correspond to 
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diffraction from Zr2Al3C4(103), Zr2Al3C4(105) and 4 H–SiC(102) planes, respectively. The six 

peaks separated by 60° in all three scans share the same φ peak positions, indicating the epitaxial 

relation Zr2Al3C4[100] || 4 H–SiC[100] and Zr2Al3C4[001] || 4 H–SiC[001]. 

TOF-ERDA quantification of the sample investigated in Fig. 1 showed average atomic 

concentrations of (Zr, Al, C, O, N) = (29.3, 26.8, 43.1, 0.6, 0.1) at.%, respectively. Traces of Ti 

and Hf, which are both common impurities found in Zr cathodes [29], were also observed but at 

levels below the quantification limit. This data shows that, relative to the composition of Zr2Al3C4, 

the film is deficient in Al, explaining the presence of ZrCx formed from the excess Zr and C. The 

nearly 4 times higher (Al/Zr) flux ratio than the stoichiometry of Zr2Al3C4 phase, as well as the Al 

deficiency observed in this film, were likely due to high sublimation rate and low sticking 

Fig. 1. (a) θ–2θ XRD patterns of a Zr2Al3C4 thin film grown on 4 H–SiC(001) at 800 °C. The inset is an in-plane 

θ–2θ XRD pattern over the range 2θ = 52–62°. (b) Tilted φ-scan XRD patterns on the Zr2Al3C4(103), Zr2Al3C4(105) 

and 4 H–SiC(102) planes of the sample shown in (a). 
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coefficient of Al at 800 °C. The known higher sputter yield of Al compared to C may also lead to 

a high rate of Al resputtering by the relatively massive Zr species. 

Figs. 2 (a) and (b) are TEM images of the sample investigated in Fig. 1, acquired along the [110] 

zone axis. Fig. 2 (a) shows a layered pattern with a vertical period of ~22.2 Å, which matches with 

the c lattice parameter of Zr2Al3C4. The inset is a SAED pattern acquired along the same zone axis 

and two diffraction points closest to the origin are indexed. Fig. 2 (b) shows an overview image of 

the film, where a ZrCx intergrowth layer can be observed in between a defect-rich Zr2Al3C4 layer 

and a Zr2Al3C4 layer with tilted grains. These tilted grains grew on the defect-rich and rough 

Fig. 2. HR-TEM images acquired along the [110] zone axis of the Zr2Al3C4 sample shown in Fig. 1. (a) The 

multilayer structure of the Zr2Al3C4 crystal. The inset is the corresponding SAED pattern. (b) An overview image 

showing different Zr2Al3C4 layers and ZrC intergrowth. 
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surface of the underlying ZrCx layer, which promoted the nucleation of other planes than the basal 

planes, normally the planes with the lowest surface energy. This shows that epitaxy of Zr2Al3C4 

strongly depends on the structural quality of the surface where nucleation takes place. 

Lin et al. have previously observed the intergrowth of ZrCx phase in Zr2Al3C4 and related 

nanolaminated phases with high-resolution scanning transmission electron microscopy [30]. 

Similarly, observations of binary carbide intergrowth have been reported in other thin films of 

layered ternary carbides, for example Ti2AlC and Ti3SiC2, where they were explained by a high 

sensitivity to local composition changes in such ternary phases [31,32]. Here, the onset of Al 

deficiency during the deposition can possibly be related to the transition into the defect rich 

Zr2Al3C4 layer. The ZrCx layer started to nucleate when the Al concentration was too low to form 

the Zr2Al3C4 phase, and the tilted Zr2Al3C4 layer started to grow on the ZrCx layer as Al 

concentration was increased again. 

3.2 Effect of the flux ratio 

Fig. 3 (a) shows θ–2θ XRD patterns of three samples grown on α-Al2O3(001) with different (Al/Zr) 

flux ratios. The sharp peaks at 20.5° and 41.7° are α-Al2O3 003 and 006 peaks respectively [26]. 

The peaks from Zr2Al3C4 basal planes (at similar positions as in Fig. 1 (a)) are marked with dashed 

lines and labeled 00 l, l = 2, 4, 6..., here and in Fig. 3 (b) and 4. The ZrCx 111 and 222 peaks are 

again observed at 33.0° and 69.1°. The peaks at 38.0° and 81.0°, sharing a common multiple of d 

spacing ~2.37 Å, are identified as (114) and (228) planes of tetragonal ZrAl3 [33]. The ZrAl3 

intermetallic phase is a commonly found phase in the synthesis of Zr–Al–C ternary carbides, such 

as Zr2Al3C4, Zr3Al3C5 and Zr2Al4C5 [20,34–36]. 
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In Fig. 3 (a), the intensities of the Zr2Al3C4 peaks increase with increasing (Al/Zr) flux ratio, which 

indicates a preferable growth condition for Zr2Al3C4 crystals with higher Al flux. It is worth noting 

that a clear trace of Zr2Al3C4 002 peak appears when the flux ratio (Al/Zr) = 5.75, which is more 

than 3 times that of (Al/Zr) = 1.50 as in the stoichiometric Zr2Al3C4. This is similar to our 

observation in Section 3.1, where a high or possibly supersaturating Al in the deposition flux is 

needed for nucleation and growth of Zr2Al3C4 phase. When the Al flux is not sufficiently high, 

ZrCx starts to nucleate and grow. Again, the supersaturation of the A element (Al, Si…etc.) in the 

ternary carbide systems is often required to initiate the nucleation of the phases [11,31,32]. Notice 

that the (C/Zr) flux ratio is very close to 0.67 of the Zr3AlC2 stoichiometry, though the latter phase 

has not yet been reported. Even within our tested incident composition range the (Al/Zr) flux ratio 

varies from 0 to 5.75, no Zr3AlC2 phase has been observed. 

Fig. 3. θ–2θ XRD patterns of Zr2Al3C4 grown on α-Al2O3(001) at 800 °C with (a) different (Al/Zr) incident atomic 

flux ratios and (b) different (C/Zr) incident atomic flux ratios. 
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Fig. 3 (b) shows θ–2θ XRD patterns of three samples grown on α-Al2O3(001) with varied (C/Zr) 

flux ratio, where similar competing phases, ZrCx and ZrAl3, are observed as in Fig. 3 (a). It shows 

that the Zr2Al3C4 phase appears for a (C/Zr) flux ratio between 0.63 to 1.67, i.e. from less than 1/3 

up to 5/6 of the Zr2Al3C4 stoichiometry. For this wide synthesis window, improved crystal quality 

can be found when the (C/Zr) flux ratio approaches the ideal stoichiometry, which increases the 

intensity of diffraction peaks Zr2Al3C4 008 and 0010. Meanwhile, the decreasing ZrCx and 

increasing Zr2Al3C4 intensity indicate that higher C flux stabilizes more Zr in Zr2Al3C4 phase. 

In both Figs. 3 (a) and (b), a high (Al/Zr) flux ratio is commonly needed in order to form Zr2Al3C4, 

also favoring the formation of ZrAl3 phase. The almost unchanged ZrAl3 intensity when varying 

the C flux, and the increasing ZrAl3 intensity when increasing the Al flux indicates that the Al flux 

is a more important determinant of the presence of this competing phase. Since Zr2Al3C4 requires 

higher Al flux ratio to nucleate, it seems difficult to purify the ternary phase simply by varying the 

incident flux ratio at this temperature. 

3.3 Effect of substrate temperature 

Fig. 4 shows θ–2θ XRD patterns of samples deposited on α-Al2O3(001) with the same flux ratio, 

(Al/Zr) = 5.75 and (C/Zr) = 1.67, at temperatures of 700 °C, 750 °C, 800 °C and 900 °C. A very 

low intensity Zr2Al3C4 008 peak can be observed at 700 °C, which increases in intensity with 

increasing substrate temperature. The only competing phase observed is the ZrAl3 phase, which is 

dominant at lower temperatures. In the sample deposited at 900 °C, the film appears highly phase 

pure Zr2Al3C4, with no trace of competing phases in the XRD pattern. 

The observation of the increased Zr2Al3C4 phase purity at higher temperatures indicates preferred 

growth of the phase compared to the competing phase, ZrAl3, and is explained by increased adatom 
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mobility and diffusion. At higher temperatures, the adatoms are supplied with more thermal energy 

and are more kinetically mobile, which enables diffusion into possible energetically favorable sites. 

Therefore comparatively long range order material can be formed, such as Zr2Al3C4 compared to 

ZrAl3, provided that the former phase is thermodynamically stable or metastable at the deposition 

temperature [37]. A similar observation has been reported in bulk synthesis of Zr2Al3C4 phase 

where the Zr2Al3C4 and Zr3Al3C5 (another (MC)n(Al3C2) phase with n = 3) phases appear above 

1160 °C and the ZrAl3 phase dominates in lower temperature [20].   

3.4 Effect of Substrate Material 

Fig. 5 shows θ–2θ XRD patterns of samples deposited on α-Al2O3(001), MgO(111), 4 H–SiC(001) 

and YSZ(111) substrates at 800 °C with the same flux ratios (Al/Zr) = 5.75 and (C/Zr) = 1.67. 

Fig. 4. θ–2θ XRD patterns of Zr2Al3C4 grown on α-Al2O3(001) substrates at four different substrate temperatures, 

all with the incident atomic flux ratio (Al/Zr)=5.75 and (C/Zr)=1.67. 
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Peaks from Zr2Al3C4 are labeled with dashed lines, while substrate and competing phases are 

labeled in their respective peak positions [26]. A new competing phase, identified as hexagonal 

Zr5Al3Cx [38], x = 0–1, appears on the 4 H–SiC substrate. M5A3Cx phases are known stable in 

many transition element systems [37]. Several diffraction peaks from Zr2Al3C4 can be observed 

on α-Al2O3 and 4 H–SiC; higher Zr2Al3C4 and lower competing phase diffraction intensities are 

found on 4 H–SiC than on α-Al2O3. In contrast, only a weak Zr2Al3C4 002 peak can be observed 

on MgO, and there is no observation of Zr2Al3C4 on YSZ substrates. This indicates a strong 

dependence of crystal growth on the structure of the underlying substrates. 

The lattice misfits εL of the Zr2Al3C4 phase on α-Al2O3(001), MgO(111), 4 H–SiC(001) and 

YSZ(111) substrates can be calculated by inserting the in-plane lattice constant of the film af and 

Fig. 5. θ–2θ XRD patterns of Zr2Al3C4 grown on α-Al2O3(001), MgO(111), 4 H–SiC(001) and YSZ(111) 

substrates, all at 800 °C and with the incident atomic flux ratio (Al/Zr)=5.75 and (C/Zr) = 1.67. 
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the substrate as into the equation εL = (af/as − 1) × 100%. The lattice misfit to the substrate is 

+21.45% (sapphire), +12.08% (MgO), +8.69% (SiC) and −8.14% (YSZ), given the lattice constant 

aZr2Al3C4 = 3.34 Å, a'sapphire = 2.75 Å, aMgO = 2.98Å, aSiC = 3.07 Å and aYSZ = 3.63 Å [26]. The 

a'sapphire is equal to asapphire/√3, for lattice constant matching in the [120] direction with asapphire = 

4.76 Å; while aYSZ is an averaged value from in-plane XRD analysis of 10 YSZ substrates. Though 

α-Al2O3(001) has a relatively large lattice misfit, a domain matching epitaxy (DME) can reduce 

the misfit significantly down to −0.6% by matching 5 Zr2Al3C4 lattices with 6 Al2O3 lattices (5/6). 

Therefore the Zr2Al3C4 phase can nucleate and grow on Al2O3 substrate. Narayan and Larson has 

demonstrated DME of ZnO on α-Al2O3(001), where the TEM image shows a 5/6 or 6/7 DME at 

the interface by inserting extra dislocations [39]. DME may also occur on 4 H–SiC(001) substrate 

with a 11/12 or 12/13 matching, which would give a misfit of less than 0.4%. However, despite the 

low DME misfit, the direct lattice misfit still affects the quality of thin films, where a lower lattice 

misfit (such as for SiC) gives improved crystal quality and higher phase purity, as shown in Fig. 5. 

No trace of Zr2Al3C4 was found in the films grown on MgO and YSZ substrates, despite a smaller 

misfit compared to α-Al2O3, indicating that the growth of the ternary phase is not solely determined 

by lattice matching. The condition of the substrate surface, e.g. crystal quality, roughness and 

surface reconstruction, can also affect film growth [40]. Usually, the surface quality of a cubic 

crystal cut in the [111] direction, such as MgO(111) and YSZ(111), is lower than for hexagonal 

and rhombohedral crystals cut in the [001] direction, due to inherent difficulties in cutting with 

high precision. Therefore a relatively high roughness and a high step density can easily be formed, 

along with an offset between [111] of the crystal and the polished surface normal. In addition, the 

MgO(111) surface is known for a very stable (√3 × √3)R30° reconstruction when O-terminated 

[41], which may not be completely removed after 15 min of heat treatment at 800 °C before the 
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deposition. If so, the Zr2Al3C4 crystals were not grown on a bulk MgO(111) surface, but a less 

homogeneously reconstructed surface. On the contrary, α-Al2O3 and 4 H–SiC substrates are 

generally of higher crystal quality and precisely cut surface, which favors the nucleation and 

growth of thin films.  

4. Conclusions 

In this work epitaxial Zr2Al3C4 thin films have been synthesized with pulsed cathodic arc, resulting 

in highly phase pure material on 4 H–SiC substrates. These films will allow future exploration of 

properties of the Zr2Al3C4. By optimizing the deposition parameters, it is possible to pursue 

Zr2Al3C4 thin films with higher phase purity by applying higher deposition temperature, supplying 

a higher Al flux ratio, and by using substrates with less lattice misfit. Also, despite flux ratios 

corresponding to the Zr3AlC2 MAX phase composition were tested, no trace of this phase was 

observed. 

Zr2Al3C4 thin film synthesis being very sensitive to flux composition, substrate temperature, and 

choice of substrate, is very similar to reported thin film synthesis of MAX phases. The similarities 

in their growth behaviors regarding A-element supersaturation and binary transition metal carbide 

intergrowth indicate a close relation between the two families of phases, despite the very different 

bonding environments of their A elements. Previously, there has been no M–element in a M–Al–C 

system reported for which both the MAX phase and (MC)n(Al3C2) or (MC)n(Al4C3) phase exist. 

However, we note that the Zr3AlC2 MAX phase was reported [42] in parallel with the present work. 
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