293 research outputs found
MicroRNAs in Renal Cell Carcinoma: Diagnostic Implications of Serum miR-1233 Levels
BACKGROUND: MicroRNA expression is altered in cancer cells, and microRNAs could serve as diagnostic/prognostic biomarker for cancer patients. Our study was designed to analyze circulating serum microRNAs in patients with renal cell carcinoma (RCC). METHODOLOGY/PRINCIPAL FINDINGS: We first explored microrna expression profiles in tissue and serum using taqman low density arrays in each six malignant and benign samples: Although 109 microRNAs were circulating at higher levels in cancer patients' serum, we identified only 36 microRNAs with up-regulation in RCC tissue and serum of RCC patients. Seven candidate microRNAs were selected for verification based on the finding of up-regulation in serum and tissue of RCC patients: miR-7-1*, miR-93, miR-106b*, miR-210, miR-320b, miR-1233 and miR-1290 levels in serum of healthy controls (n = 30) and RCC (n = 33) patients were determined using quantitative real-time PCR (TaqMan MicroRNA Assays). miR-1233 was increased in RCC patients, and thus validated in a multicentre cohort of 84 RCC patients and 93 healthy controls using quantitative real-time PCR (sensitivity 77.4%, specificity 37.6%, AUC 0.588). We also studied 13 samples of patients with angiomyolipoma or oncocytoma, whose serum miR-1233 levels were similar to RCC patients. Circulating microRNAs were not correlated with clinical-pathological parameters. CONCLUSIONS/SIGNIFICANCE: MicroRNA levels are distinctly increased in cancer patients, although only a small subset of circulating microRNAs has a tumor-specific origin. We identify circulating miR-1233 as a potential biomarker for RCC patients. Larger-scaled studies are warranted to fully explore the role of circulating microRNAs in RCC
Identification of Mouse Serum miRNA Endogenous References by Global Gene Expression Profiles
MicroRNAs (miRNAs) are recently discovered small non-coding RNAs and can serve as serum biomarkers for disease diagnosis and prognoses. Lack of reliable serum miRNA endogenous references for normalization in miRNA gene expression makes single miRNA assays inaccurate. Using TaqMan® real-time PCR miRNA arrays with a global gene expression normalization strategy, we have analyzed serum miRNA expression profiles of 20 female mice of NOD/ShiLtJ (n = 8), NOR/LtJ (n = 6), and C57BL/6J (n = 6) at different ages and disease conditions. We identified five miRNAs, miR-146a, miR-16, miR-195, miR-30e and miR-744, to be stably expressed in all strains, which could serve as mouse serum miRNA endogenous references for single assay experiments
MicroRNAs-Based Imaging Techniques in Cancer Diagnosis and Therapy.
Cancer is one of the most serious global health concerns in different populations. Several studies indicated that there are many potentially promising cellular and molecular targets for cancer therapy within cancer cells and their microenvironment. Among different cellular and molecular targets involved in cancer pathogenesis, microRNAs (miRNAs) are well known as key targets for cancer therapy. miRNAs are one of main classes of non-coding RNAs. These molecules play important roles in different critical processes of cancer pathogenesis. Hence, this makes miRNAs as a suitable tool for cancer diagnosis and therapy. There are different approaches for monitoring miRNAs in cancer patients. Some conventional approaches including next-generation sequencing, real-time polymerase chain reaction (PCR), northern blotting, and microarrays could be used for assessment of miRNAs expression. Some studies revealed that the utilization of these approaches associated with various limitations. Recently, it has been revealed that molecular imaging techniques are powerful tools for monitoring of different cellular and molecular targets involved in various diseases such as cancer. These techniques help investigators to investigate and monitor miRNAs functions through assessing different targets by fluorescent proteins, bioluminescent enzymes, molecular beacons, as well as various nanoparticles. Therefore, utilization of molecular imaging techniques could assist investigators to better monitor and more effectively treat patients during different phases of malignancy. Here, we give a review on the current state of miRNAs-based imaging techniques in cancer diagnosis and therapy. J. Cell. Biochem. 9999: 1-8, 2017. © 2017 Wiley Periodicals, Inc
Identification of Serum MicroRNAs as Novel Non-Invasive Biomarkers for Early Detection of Gastric Cancer
BACKGROUND: To investigate the potential of serum miRNAs as biomarkers for early detection of gastric cancer (GC), a population-based study was conducted in Linqu, a high-risk area of GC in China. METHODOLOGY/PRINCIPAL FINDINGS: All subjects were selected from two large cohort studies. Differential miRNAs were identified in serum pools of GC and control using TaqMan low density array, and validated in individual from 82 pairs of GC and control, and 46 pairs of dysplasia and control by real-time quantitative reverse transcription-polymerase chain reaction. The temporal trends of identified serum miRNA expression were further explored in a retrospective study on 58 GC patients who had at least one pre-GC diagnosis serum sample based on the long-term follow-up population. The miRNA profiling results demonstrated that 16 miRNAs were markedly upregulated in GC patients compared to controls. Further validation identified a panel of three serum miRNAs (miR-221, miR-744, and miR-376c) as potential biomarkers for GC detection, and receiver operating characteristic (ROC) curve-based risk assessment analysis revealed that this panel could distinguish GCs from controls with 82.4% sensitivity and 58.8% specificity. MiR-221 and miR-376c demonstrated significantly positive correlation with poor differentiation of GC, and miR-221 displayed higher level in dysplasia than in control. Furthermore, the retrospective study revealed an increasing trend of these three miRNA levels during GC development (P for trend<0.05), and this panel could classify serum samples collected up to 5 years ahead of clinical GC diagnosis with 79.3% overall accuracy. CONCLUSIONS/SIGNIFICANCE: These data suggest that serum miR-221, miR-376c and miR-744 have strong potential as novel non-invasive biomarkers for early detection of GC
A Panel of Serum MicroRNAs as Specific Biomarkers for Diagnosis of Compound- and Herb-Induced Liver Injury in Rats
Drug-induced liver injury (DILI) has been a public, economic and pharmaceutical issue for many years. Enormous effort has been made for discovering and developing novel biomarkers for diagnosing and monitoring both clinical and preclinical DILI at an early stage, though progress has been relatively slow. Additionally, herb-induced liver injury is an emerging cause of liver disease because herbal medicines are increasingly being used worldwide. Recently, circulating microRNAs (miRNAs) have shown potential to serve as novel, minimally invasive biomarkers to diagnose and monitor human cancers and other diseases at early stages.In order to identify candidate miRNAs as diagnostic biomarkers for DILI, miRNA expression profiles of serum and liver tissue from two parallel liver injury Sprague-Dawley rat models induced by a compound (acetaminophen, APAP) or an herb (Dioscorea bulbifera, DB) were screened in this study. The initial screens were performed on serum using a MicroRNA TaqMan low-density qPCR array and on liver tissue using a miRCURY LNA hybridization array and were followed by a TaqMan probe-based quantitative reverse transcription-PCR (qRT-PCR) assay to validate comparison with serum biochemical parameters and histopathological examination. Two sets of dysregulated miRNA candidates in serum and liver tissue were selected in the screening phase. After qRT-PCR validation, a panel of compound- and herb- related serum miRNAs was identified.We have demonstrated that this panel of serum miRNAs provides potential biomarkers for diagnosis of DILI with high sensitivity and specificity
- …