106 research outputs found

    Απειλές για την διεθνή ειρήνη και ασφάλεια σε σχέση με δραστηριότητες που λαμβάνουν χώρα στην Αποκλειστική Οικονομική Ζώνη (ΑΟΖ)

    Get PDF
    Η παρούσα διπλωματική εργασία μελετά και πραγματεύεται τις απειλές για την διεθνή ειρήνη και ασφάλεια που προκύπτουν από δραστηριότητες που λαμβάνουν χώρα στην αποκλειστική οικονομική ζώνη. Είναι σημαντικό να γίνει από πολύ νωρίς αντιληπτή η έννοια του όρου "απειλή". Με τον όρο ‶απειλή″ δεν εννοούμε τον όρο έτσι όπως τον περιγράφει το άρθρο 39 του Καταστατικού Χάρτη των Ηνωμένων Εθνών, αλλά είναι περισσότερο ένα term of art rather than a term of law. Στην παρούσα εργασία ο όρος αυτός λοιπόν λογίζεται περισσότερο με την έννοια της ‶απειλής χρήσης βίας″ . Αναλύεται στο κυρίως κείμενο ενδελεχώς. Είναι εξίσου δύσκολο να διασφαλιστεί η διεθνής θαλάσσια ασφάλεια και ειρήνη, είτε αναφερόμαστε σε οριοθετημένη είτε σε μη οριοθετημένη θαλάσσια ζώνη και πιο συγκεκριμένα αποκλειστική οικονομική ζώνη (ΑΟΖ). Αυτό συμβαίνει γιατί οι διεκδικήσεις των κρατών αφορμώμενες από το ενίοτε εθνικό συμφέρον και μελλοντικό κέρδος δεν αφήνουν πολλά περιθώρια στα κράτη να ακολουθήσουν κατά γράμμα τον νόμο. Ή τουλάχιστον έτσι θεωρούν. Σύμφωνα με πολλούς, υπάρχει μια τάση στην κρατική πρακτική να ακολουθεί μια υποκειμενική προσέγγιση ως προς το τι συνιστά κίνδυνο ή παρεμπόδιση που έρχεται για παράδειγμα σε αντίθεση με την αντικειμενική προσέγγιση του δικαστηρίου στην Απόφαση Γουιάνας κατά Σουρινάμ. Η εργασία αυτή προσπαθεί, χρησιμοποιώντας θεωρητικά μοντέλα και παραδείγματα, να καταδείξει τους λόγους, τις απειλές και τις αιτίες όπου τα κράτη έρχονται σε σύγκρουση στον χώρο της αποκλειστικής οικονομικής ζώνης.This diploma thesis studies and addresses the threats to international peace and security arising from activities taking place in the exclusive economic zone. It is important that the notion of "threat" should be perceived too early. By "threat" we do not mean the term as described in Article 39 of the Charter of the United Nations, but it is more a term of art rather than a term of law. In the present work, therefore, this term is considered more in a sense of "threat of violence". It is thoroughly analyzed in the main text. It is equally difficult to ensure international maritime security and peace, whether we refer to a delimited or undelimited maritime area and, more specifically, an exclusive economic zone (EEZ). This is because the demands of states on occasion of national interest and future profit do not leave much room for states to follow literally the law. Or so they think. According to many, there is a tendency in state practice to follow a subjective approach as to what constitutes a risk or obstruction, for example in contrast to the Court's objective approach in the case of Guyana against Suriname. This work attempts, using theoretical models and examples, to demonstrate the reasons, threats, and causes of conflicting states in the area of the exclusive economic zone

    Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign

    Get PDF
    One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the gas and particulate phases. In this work the PMCAMx-2008 CTM, which includes the recently developed aerosol thermodynamic model ISORROPIA-II, is applied in the Mexico City Metropolitan Area in order to simulate the formation of the major inorganic aerosol components. The main sources of SO2 (such as the Miguel Hidalgo Refinery and the Francisco Perez Rios Power Plant) in the Mexico City Metropolitan Area (MCMA) are located in Tula, resulting in high predicted PM1 (particulate matter with diameter less than 1 µm) sulfate concentrations (over 25 µg m-3) in that area. The average predicted PM1 nitrate concentrations are up to 3 µg m-3 (with maxima up to 11 µg m-3) in and around the urban center, mostly produced from local photochemistry. The presence of calcium coming from the Tolteca area (7 µg m-3) as well as the rest of the mineral cations (1 µg m-3 potassium, 1 µg m-3 magnesium, 2 µg m-3 sodium, and 3 µg m-3 calcium) from the Texcoco Lake resulted in the formation of a significant amount of aerosol nitrate in the coarse mode with concentrations up to 3 µg m-3 over these areas. PM1-10 (particulate matter with diameter between 1 and 10 µm) chloride is also high and its concentration exceeds 2 µg m-3 in Texcoco Lake. PM1 ammonium concentrations peak at the center of Mexico City (2 µg m-3) and the Tula vicinity (2.5 µg m-3). The performance of the model for the major inorganic PM components (sulfate, ammonium, nitrate, chloride, sodium, calcium, and magnesium) is encouraging. At the T0 measurement site, located in the Mexico City urban center, the average measured values of PM1 sulfate, nitrate, ammonium, and chloride are 3.5 µg m-3, 3.5 µg m-3, 2.1 µg m-3, and 0.36 µg m-3, respectively. The corresponding predicted values are 3.7 µg m-3, 2.7 µg m-3, 1.7 µg m-3, and 0.25 µg m-3. High sulfate concentrations are associated with the transport of sulfate from the Tula vicinity, while in periods where southerly winds are dominant; the concentrations of sulfate are low. The underprediction of nitrate can be attributed to the underestimation of OH levels by the model during the early morning. Ammonium is sensitive to the predicted sulfate concentrations and the nitrate levels. The performance of the model is also evaluated against measurements taken from a suburban background site (T1) located north of Mexico City. The average predicted PM2.5 (particulate matter with diameter less than 2.5 µm) sulfate, nitrate, ammonium, chloride, sodium, calcium, and magnesium are 3.3, 3.2, 1.4, 0.5, 0.3, 1.2, and 0.15 µg m-3, respectively. The corresponding measured concentrations are 3.7, 2.9, 1.5, 0.3, 0.4, 0.6, and 0.15 µg m-3. The overprediction of calcium indicates a possible overestimation of its emissions and affects the partitioning of nitric acid to the aerosol phase resulting occasionally in an overprediction of nitrate. Additional improvements are possible by improving the performance of the model regarding the oxidant levels, and revising the emissions and the chemical composition of the fugitive dust. The hybrid approach in which the mass transfer to the fine aerosol is simulated using the bulk equilibrium assumption and to the remaining aerosol sections using a dynamic approach, is needed in order to accurately simulate the size distribution of the inorganic aerosols. The bulk equilibrium approach fails to reproduce the observed coarse nitrate and overpredicts the fine nitrate. Sensitivity tests indicate that sulfate concentration in Tula decreases by up to 0.5 µg m-3 after a 50% reduction of SO2 emissions while it can increase by up to 0.3 µg m-3 when NOx emissions are reduced by 50%. Nitrate concentration decreases by up to 1 µg m-3 after the 50% reduction of NOx or NH3 emissions. Ammonium concentration decreases by up to 1 µg m-3, 0.3 µg m-3, and 0.1 µg m-3 after the 50% reduction of NH3, NOx, and SO2 emissions, respectively.Seventh Framework Programme (European Commission) (MEGAPOLI Grant agreement no.: 212520)National Institutes of Health (U.S.) (NSF (ATM-0528227

    Sources and production of organic aerosol in Mexico City: insights from the combination of a chemical transport model (PMCAMx-2008) and measurements

    Get PDF
    Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 includes the recently developed volatility basis-set framework in which both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico de Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites is encouraging. The average predicted PM[subscript 1] organic aerosol (OA) concentration in T0, T1, and T2 is 18 μg m[superscript −3], 11.7 μg m[superscript −3], and 10.5 μg m[superscript −3] respectively, while the corresponding measured values are 17.2 μg m[superscript −3], 11 μg m[superscript −3], and 9 μg m[superscript −3]. The average predicted locally-emitted primary OA concentrations, 4.4 μg m[superscript −3] at T0, 1.2 μg m[superscript −3] at T1 and 1.7 μg m[superscript −3] at PTP, are in reasonably good agreement with the corresponding PMF analysis estimates based on the Aerosol Mass Spectrometer (AMS) observations of 4.5, 1.3, and 2.9 μg m[superscript −3] respectively. The model reproduces reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m[superscript −3] predicted versus 7.5 μg m[superscript −3] measured), in T1 (6.3 μg m[superscript −3] predicted versus 4.6 μg m[superscript −3] measured) and in PTP (6.6 μg m[superscript −3] predicted versus 5.9 μg m[superscript −3] measured). The rest of the OA mass (6.1 μg m[superscript −3] and 4.2 μg m[superscript −3] in T0 and T1 respectively) is assumed to originate from biomass burning activities and is introduced to the model as part of the boundary conditions. Inside Mexico City (at T0), the locally-produced OA is predicted to be on average 60 % locally-emitted primary (POA), 6 % semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 34 % traditional SOA from the oxidation of VOCs (V-SOA). The average contributions of the OA components to the locally-produced OA for the entire modelling domain are predicted to be 32 % POA, 10 % S-SOA and I-SOA, and 58 % V-SOA. The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.European UnionSeventh Framework Programme (European Commission) (Grant agreement no.: 212520)National Science Foundation (U.S.) (ATM 0732598)Molina Center for Energy and the EnvironmentNational Science Foundation (U.S.) (ATM 0528227)National Science Foundation (U.S.) (ATM 0810931

    Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    Get PDF
    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants

    Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign

    Get PDF
    Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1) a traditional 2-product secondary organic aerosol (SOA) model with non-volatile primary organic aerosols (POA); (2) a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA (Mexico City Metropolitan Area) 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS) observations analyzed using the Positive Matrix Factorization (PMF) technique at an urban background site (T0) and a suburban background site (T1) in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the suburban area. In the non-traditional SOA model, the aging process of primary organic components considerably decreases the OH levels in simulations and further impacts the SOA formation. If the aging process in the non-traditional model does not have feedback on the OH in the gas-phase chemistry, the SOA production is enhanced by more than 10% compared to the simulations with the OH feedback during daytime, and the gap between the simulations and observations in the urban area is around 3 μg m[superscript −3] or 20% on average during late morning and early afternoon, within the uncertainty from the AMS measurements and PMF analysis. In addition, glyoxal and methylglyoxal can contribute up to approximately 10% of the observed SOA mass in the urban area and 4% in the suburban area. Including the non-OH feedback and the contribution of glyoxal and methylglyoxal, the non-traditional SOA model can explain up to 83% of the observed SOA in the urban area, and the underestimation during late morning and early afternoon is reduced to 0.9 μg m[superscript −3] or 6% on average. Considering the uncertainties from measurements, emissions, meteorological conditions, aging of semi-volatile and intermediate volatile organic compounds, and contributions from background transport, the non-traditional SOA model is capable of closing the gap in SOA mass between measurements and models.National Science Foundation (U.S.). Atmospheric Chemistry Program (ATM-0528227)National Science Foundation (U.S.). Atmospheric Chemistry Program (ATM-0810931)Molina Center for Energy and the Environmen

    Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area

    Get PDF
    New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modeling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx [low - NO subscript x] and high-NOx [high - NO subscript x] conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA) for approximately a week during April of 2003. The emission inventory, which uses as starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA) concentrations peak in the center of Mexico City reaching values above 40 μg [mu g] m−3 [m superscript -3]. The model predictions are compared with Aerosol Mass Spectrometry (AMS) observations and their Positive Matrix Factorization (PMF) analysis. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA) and Oxygenated Organic Aerosol (OOA) concentrations and diurnal profiles. The small OA underprediction during the rush hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol observations for the right reasons. Other combinations of contributions of primary, aged primary, and secondary organic aerosol production rates may lead to similar results. The model results suggest strongly that during the simulated period transport of OA from outside the city was a significant contributor to the observed OA levels. Future simulations should use a larger domain in order to test whether the regional OA can be predicted with current SOA parameterizations. Sensitivity tests indicate that the predicted OA concentration is especially sensitive to the volatility distribution of the emissions in the lower volatility bins.Seventh Framework Programme (European Commission)European UnionMEGAPOLI (Project) (Grant agreement no. 212520)Molina Center for Energy and the EnvironmentUnited States. National Oceanic and Atmospheric Administration. Office of Global Programs (Grant NA08OAR4310565)National Science Foundation (U.S.) (Grant ATM-0528634)National Science Foundation (U.S.) (Grant ATM-0528227)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (DEFG0208ER64627

    Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)

    Get PDF
    A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations (ICNCs). The parameterization of Barahona and Nenes (2009, hereafter BN09) allows for the treatment of ice nucleation taking into account the competition for water vapour between homogeneous and heterogeneous nucleation in cirrus clouds. Furthermore, the influence of chemically heterogeneous, polydisperse aerosols is considered by applying one of the multiple ice nucleating particle parameterizations which are included in BN09 to compute the heterogeneously formed ice crystals. BN09 has been modified in order to consider the pre-existing ice crystal effect and implemented to operate both in the cirrus and in the mixed-phase regimes. Compared to the standard EMAC parameterizations, BN09 produces fewer ice crystals in the upper troposphere but higher ICNCs in the middle troposphere, especially in the Northern Hemisphere where ice nucleating mineral dust particles are relatively abundant. Overall, ICNCs agree well with the observations, especially in cold cirrus clouds (at temperatures below 205&thinsp;K), although they are underestimated between 200 and 220&thinsp;K. As BN09 takes into account processes which were previously neglected by the standard version of the model, it is recommended for future EMAC simulations.</p

    Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation

    Get PDF
    A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24 % and -35 % for particles with dry diameters > 50 and > 120 nm, as well as -36 % and -34 % for CCN at supersaturations of 0.2 % and 1.0 %, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1 %) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N-3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2 % (CCN0.2) compared to that for N-3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120 nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40 % during winter and 20 % in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13 % and -22 % for updraft velocities 0.3 and 0.6 m s(-1), respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (partial derivative N-d/partial derivative N-a) and to updraft velocity (partial derivative N-d/partial derivative w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities partial derivative N-d/partial derivative N-a and partial derivative N-d/partial derivative w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.Peer reviewe

    Evaluation of Global Simulations of Aerosol Particle and Cloud Condensation Nuclei Number, with Implications for Cloud Droplet Formation

    Get PDF
    A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters > 50 and > 120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (< 0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN(0.2)) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer
    corecore