61 research outputs found

    Genetic vs community diversity patterns of macrobenthic species: preliminary results from the lagoonal ecosystem

    Get PDF
    1 - The use of molecular data derived from multispecies assemblages in order to test ecological theory has only recently been introduced in the scientific literature.2 - As a first step, we compared patterns of abiotic environment, polychaeta distribution and their genetic diversity in five lagoon ecosystems in Greece. Our results confirm the hypothesis that higher genetic diversity is expected in the populations of the species occurring in the transitional waters rather than of those occurring in the marine environment.3 - Patterns derived from the polychaete community level and from the mitochondrial DNA (16S rRNA) obtained from Nephtys hombergii and Hediste diversicolor showed convergence, indicating the potential use of molecular matrices as surrogates in community analysis.4 - Finally, the high correlation between the genetic diversity pattern of H. diversicolor and the phosphorus concentration in the sediments may imply the broadening of the hierarchic-response-tostress hypothesis towards lower than species level

    Muscle and liver transcriptome characterization and genetic marker discovery in the farmed meagre, Argyrosomus regius

    Get PDF
    Meagre (Argyrosomus regius), a teleost fish of the family Sciaenidae, is part of a group of marine fish species considered new for Mediterranean aquaculture representing the larger fish cultured in the region. Meagre aquaculture started ~ 25 years ago in West Mediterranean, and the supply of juveniles has been dominated by few hatcheries. This fact has raised concerns on possible inbreeding, urging the need for genetic information on the species and for an assessment of the polymorphisms found in the genome. To that end we characterized the muscle and liver transcriptome of a pool of meagre individuals, from different families and phenotypic size, to obtain a backbone that can support future studies regarding physiology, immunology and genetics of the species. The assembled transcripts were assigned to a wide range of biological processes including growth, reproduction, metabolism, development, stress and behavior. Then, to infer its genetic diversity and provide a catalogue of markers for future use, we scanned the reconstructed transcripts for polymorphic genetic markers. Our search revealed a total of 42,933 high quality SNP and 20,581 STR markers. We found a relatively low rate of polymorphism in the transcriptome that may indicate that inbreeding has taken place. This study has led to a catalogue of genetic markers at the expressed part of the genome and has set the ground for understanding growth and other traits of interest in meagre.info:eu-repo/semantics/acceptedVersio

    Spawning kinetics and parentage contribution of European sea bass (Dicentrarchus labrax) broodstocks, and influence of GnRHa-induced spawning

    Get PDF
    Abstract Increasing parentage contribution in aquaculture broodstocks is important, in order to take full advantage of the available genetic makeup of the chosen fish, and to avoid inbreeding and loss of allele diversity over subsequent production generations. European sea bass (Dicentrarchus labrax) broodstocks were evaluated over two reproductive seasons to examine spawning kinetics, egg production, and parentage contribution during spontaneous/volitional spawning. In addition, we obtained preliminary results on the potential of a hormonal therapy to synchronize spawning and increase parentage contribution. Spawning lasted between 25 and 66 days in January-March and consisted of 12–21 daily spawns per broodstock, with individual females spawning 1–5 times and males participating in 1–8 spawns during each reproductive season. Daily fecundity was variable during the season, without any trend, and so were all the examined egg/larval quality parameters. Parentage assignment of the produced families indicated that the majority of progeny from a whole season may belong to a very small number of breeders, with four females producing up to 80 % of the analyzed eggs, while a single male may sire up to 57 % of the fertilized eggs. No significant improvement in the overall parentage contribution was obtained with the hormonal treatment, using gonadotropin releasing hormone agonist (GnRHa). Nevertheless, the daily fecundity was higher, and parentage of the eggs from the first spawn after GnRHa treatment was more equally distributed to multiple males/females, compared to any volitional spawns. The study demonstrates the need to further improve parentage contribution in European sea bass aquaculture, through synchronization of maturation and spawning. Although the GnRHa induction experiment was not replicated in the present preliminary study, the results suggest that hormonally-induced synchronization of maturation may have the potential of producing a larger number of progenies from more families, from where to select the next generation of breeders for a breeding program

    The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo)

    Get PDF
    Background: Teleosts are characterized by a remarkable breadth of sexual mechanisms including various forms of hermaphroditism. Sparidae is a fish family exhibiting gonochorism or hermaphroditism even in closely related species. The sparid Diplodus puntazzo (sharpsnout seabream), exhibits rudimentary hermaphroditism characterized by intersexual immature gonads but single-sex mature ones. Apart from the intriguing reproductive biology, it is economically important with a continuously growing aquaculture in the Mediterranean Sea, but limited available genetic resources. Our aim was to characterize the expressed transcriptome of gonads and brains through RNA-Sequencing and explore the properties of genes that exhibit sex-biased expression profiles. Results: Through RNA-Sequencing we obtained an assembled transcriptome of 82,331 loci. The expression analysis uncovered remarkable differences between male and female gonads, while male and female brains were almost identical. Focused search for known targets of sex determination and differentiation in vertebrates built the sex-specific expression profile of sharpsnout seabream. Finally, a thorough genetic marker discovery pipeline led to the retrieval of 85,189 SNPs and 29,076 microsatellites enriching the available genetic markers for this species. Conclusions: We obtained a nearly complete source of transcriptomic sequence as well as marker information for sharpsnout seabream, laying the ground for understanding the complex process of sex differentiation of this economically valuable species. The genes involved include known candidates from other vertebrate species, suggesting a conservation of the toolkit between gonochorists and hermaphrodites

    The Gene Toolkit Implicated in Functional Sex in Sparidae Hermaphrodites: Inferences From Comparative Transcriptomics

    Get PDF
    Sex-biased gene expression is the mode through which sex dimorphism arises from a nearly identical genome, especially in organisms without genetic sex determination. Teleost fishes show great variations in the way the sex phenotype forms. Among them, Sparidae, that might be considered as a model family displays a remarkable diversity of reproductive modes. In this study, we sequenced and analyzed the sex-biased transcriptome in gonads and brain (the tissues with the most profound role in sexual development and reproduction) of two sparids with different reproductive modes: the gonochoristic common dentex, Dentex dentex, and the protandrous hermaphrodite gilthead seabream, Sparus aurata. Through comparative analysis with other protogynous and rudimentary protandrous sparid transcriptomes already available, we put forward common male and female-specific genes and pathways that are probably implicated in sex-maintenance in this fish family. Our results contribute to the understanding of the complex processes behind the establishment of the functional sex, especially in hermaphrodite species and set the groundwork for future experiments by providing a gene toolkit that can improve efforts to control phenotypic sex in finfish in the ever-increasingly important field of aquaculture

    Quantitative Trait Loci Involved in Sex Determination and Body Growth in the Gilthead Sea Bream (Sparus aurata L.) through Targeted Genome Scan

    Get PDF
    Among vertebrates, teleost fish exhibit a considerably wide range of sex determination patterns that may be influenced by extrinsic parameters. However even for model fish species like the zebrafish Danio rerio the precise mechanisms involved in primary sex determination have not been studied extensively. The zebrafish, a gonochoristic species, is lacking discernible sex chromosomes and the sex of juvenile fish is difficult to determine. Sequential protandrous hermaphrodite species provide distinct determination of the gender and allow studying the sex determination process by looking at the mechanism of sex reversal. This is the first attempt to understand the genetic basis of phenotypic variation for sex determination and body weight in a sequential protandrous hermaphrodite species, the gilthead sea bream (Sparus aurata). This work demonstrates a fast and efficient strategy for Quantitative Trait Loci (QTL) detection in the gilthead sea bream, a non-model but target hermaphrodite fish species. Therefore a comparative mapping approach was performed to query syntenies against two other Perciformes, the European sea bass (Dicentrarchus labrax), a gonochoristic species and the Asian sea bass (Lates calcarifer) a protandrous hermaphrodite. In this manner two significant QTLs, one QTL affecting both body weight and sex and one QTL affecting sex, were detected on the same linkage group. The co-segregation of the two QTLs provides a genomic base to the observed genetic correlation between these two traits in sea bream as well as in other teleosts. The identification of QTLs linked to sex reversal and growth, will contribute significantly to a better understanding of the complex nature of sex determination in S. aurata where most individuals reverse to the female sex at the age of two years through development and maturation of the ovarian portion of the gonad and regression of the testicular area. [Genomic sequences reported in this manuscript have been submitted to GenBank under accession numbers HQ021443–HQ021749.

    Biological and trophic consequences of genetic introgression between endemic and invasive Barbus fishes.

    Get PDF
    Genetic introgression with native species is recognized as a detrimental impact resulting from biological invasions involving taxonomically similar invaders. Whilst the underlying genetic mechanisms are increasingly understood, the ecological consequences of introgression are relatively less studied, despite their utility for increasing knowledge on how invasion impacts can manifest. Here, the ecological consequences of genetic introgression from an invasive congener were tested using the endemic barbel populations of central Italy, where the invader was the European barbel Barbus barbus. Four populations of native Barbus species (B. plebejus and B. tyberinus) were studied: two purebred and two completely introgressed with alien B. barbus. Across the four populations, differences in their biological traits (growth, body condition and population demographic structure) and trophic ecology (gut content analysis and stable isotope analysis) were tested. While all populations had similar body condition and were dominated by fish up to 2 years of age, the introgressed fish had substantially greater lengths at the same age, with maximum lengths 410-460 mm in hybrids versus 340-360 mm in native purebred barbel. The population characterized by the highest number of introgressed B. barbus alleles (81 %) had the largest trophic niche and a substantially lower trophic position than the other populations through its exploitation of a wider range of resources (e.g. small fishes and plants). These results attest that the genetic introgression of an invasive congener with native species can result in substantial ecological consequences, including the potential for cascading effects. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-021-02577-6
    • …
    corecore