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Abstract 20 

Meagre (Argyrosomus regius), a teleost fish of the family Sciaenidae, is part of a group of 21 

marine fish species considered new for Mediterranean aquaculture representing the larger fish 22 

cultured in the region. Meagre aquaculture started ~25 years ago in West Mediterranean, and 23 

the supply of juveniles has been dominated by few hatcheries. This fact has raised concerns 24 

on possible inbreeding, urging the need for genetic information on the species and for an 25 

assessment of the polymorphisms found in the genome. To that end we characterized the 26 

muscle and liver transcriptome of a pool of meagre individuals, from different families and 27 

mailto:tsigeno@hcmr.gr
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phenotypic size, to obtain a backbone that can support future studies regarding physiology, 28 

immunology and genetics of the species. The assembled transcripts were assigned to a wide 29 

range of biological processes including growth, reproduction, metabolism, development, 30 

stress and behavior. Then, to infer its genetic diversity and provide a catalogue of markers for 31 

future use, we scanned the reconstructed transcripts for polymorphic genetic markers. Our 32 

search revealed a total of 42,933 high quality SNP and 20,581 STR markers. We found a 33 

relatively low rate of polymorphism in the transcriptome that may indicate that inbreeding has 34 

taken place. This study has led to a catalogue of genetic markers at the expressed part of the 35 

genome and has set the ground for understanding growth and other traits of interest in 36 

meagre. 37 

 38 

 39 
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Introduction 41 

The meagre, Argyrosomus regius (Asso y del Rio 1801) is a teleost fish that belongs to the 42 

family Sciaenidae and is widely distributed along the eastern Atlantic Ocean coast and the 43 

entire Mediterranean Sea (Chao, 1986). Throughout the distribution, meagre holds an 44 

important role in fisheries and now represents one of the newly emerging and promising 45 

aquaculture species across the Mediterranean region. There appears to be few fast growing 46 

large aquaculture species in the Mediterranean region and meagre together with greater 47 

amberjack (Seriola dumerili) fill this niche. Meagre aquaculture started in late nineties in 48 

France and Italy and since then has expanded in other European countries (FAO, 2015). 49 

Interestingly, meagre fry production has been for years carried out through a single hatchery 50 

in France (Monfort 2010), a fact that raises concerns regarding the genetic diversity of the 51 

European aquaculture stocks and requires evaluation. 52 

Coupled with the increasing interest in the aquaculture industry, meagre is being explored in 53 

various fields, such as reproduction and broodstock management (DUNCAN et al. 2012; 54 

MYLONAS et al. 2015) and spawning with (MYLONAS et al. 2013b; FERNÁNDEZ et al. 2014) 55 

and without (MYLONAS et al. 2013a; SOARES et al. 2015) hormones, larval rearing conditions 56 

(ESTEVEZ et al. 2007; ROO et al. 2010; VALLÉS AND ESTÉVEZ 2013)), larval nutritional 57 

requirements (CAMPOVERDE AND ESTEVEZ 2017; EL KERTAOUI et al. 2017), skeletal 58 

development (CARDEIRA et al. 2012) and digestion (CASTRO et al. 2013; PAPADAKIS et al. 59 

2013). Although studies are accumulating for various fields of species biology, the genetic 60 

information and stock structure are only scarcely studied with the available information being 61 

limited to only 148 nucleotide and 71 protein entries in NCBI (as of 16 May 2017). 62 

The paucity of available genetic resources is currently an impediment to any future effort for 63 

genetic improvement in the species. However, through next generation sequencing (NGS) 64 

technologies, and in particular RNA-Sequencing (RNA-Seq), one can collect sequence 65 

information for thousands of genes in a single experiment (WANG et al. 2009). Transcriptome 66 

characterization is one of the main applications of NGS as it lays the groundwork for future 67 

studies on physiology, genetics, immunology, etc., creates inventories and gives access to 68 
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thousand of single nucleotide polymorphisms (SNP) and short tandem repeats (STR) markers. 69 

Up to now, it has been widely used for numerous fish species leading to a tremendous pool of 70 

genetic knowledge (e.g. see database FISHIT [http://www.fish-it.org/hcmr/] for 20 71 

transcriptomes). Especially for farmed species, RNA-Seq can be an invaluable source of 72 

genetic information that can facilitate research on reproduction and sex dimorphism 73 

(MANOUSAKI et al. 2014; PALSTRA et al. 2015), physiology (KAITETZIDOU et al. 2012; 74 

TELES et al. 2013; MININNI et al. 2014), growth (GARCIA DE LA SERRANA et al. 2015), 75 

metabolism (CEREZUELA et al. 2013; DE SANTIS et al. 2015; GLENCROSS et al. 2015), 76 

immunity and disease resistance (CALDUCH-GINER et al. 2012; SARROPOULOU et al. 2012; 77 

ALI et al. 2014; MARANCIK et al. 2015; VALENZUELA-MIRANDA et al. 2015) and genetic 78 

marker discovery (MANOUSAKI et al. 2014; YU et al. 2014). 79 

The goal of this paper was two-fold. First, we sought to characterize the transcriptome of 80 

meagre and build a solid transcriptomic reference for the species. Then, we aimed at assessing 81 

the genetic polymorphism of the species by including a thorough SNP and STR discovery 82 

from multiple individuals of farmed meagre. The discovered markers will set the groundwork 83 

for future marker-assisted selection for the species. 84 

 85 

Materials & Methods 86 

 87 

Sample collection 88 

Animal care was carried out according to the “Guidelines for the treatment of animals in 89 

behavioural research and teaching” (Animal Behaviour 2001). Fish were selected 90 

(aquaculture facilities, IRTA, Spain, 21 August 2014, Table 1) from five different meagre 91 

crosses (families) that resulted from a mix of cultured and wild outbred parents. Muscle and 92 

liver tissues were dissected and preserved in RNAlater® (Applied Biosystems, Foster City, 93 

CA, USA). Sixteen meagre individuals were randomly selected for RNA Sequencing analysis 94 

(Supplementary Table 1). 95 
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Table 1. MIxS information for transcriptome assembly of Argyrosomus regius. 96 

Item Description 

Classification 
Eukaryota; Animalia; Chordata; Vertebrata; Actinopterygii; Percomorphaceae; 

Sciaenidae; Argyrosomus regius 

Investigation type Eukaryote transcriptome  

Project name Meagre transcriptome 

Environment 

 
Latitude, longitude 41.634502, 2.167185 

Geographical location IRTA, Spain 

Collection date 21/8/2014 

Biome marine biome (ENVO_00000447) 

Feature fish farm (ENVO:00000294) 

Material 
sea water (ENVO:00002149) 

Sequencing 

 
Sequencing method Illumina HiSeq 2500 paired-end 

Estimated size  100 Mb 

Organ or tissue source Liver, muscle tissue 

Assembly  

Method  De novo assembly 

Program Trinity trinityrnaseq_r2013-02-25 

Finishing strategy High quality transcriptome assembly 

Data accessibility  

Database name NCBI  

Project name PRJNA397355, PRJNA399060 

Sample name SRR5903997, SRR5903998, SAMN07522546 

 97 
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RNA extraction, library preparation and sequencing 98 

Muscle and liver tissues from the 16 individuals were collected in a sterile and RNase-free 99 

way. Following the manufacturer's recommendations, soaked tissues in RNAlater®, were 100 

stored at 4°C overnight and then were transferred to −80°C until further processing. For both 101 

tissue types the samples were grinded under liquid nitrogen using pestle and mortar. Liver is 102 

rich in RNA and thus a small amount of tissue was adequate to purify a high quality RNA 103 

using Qiagen’s RNeasy Plus extraction kit (QIAGEN®). In contrary, because of the low cell 104 

density and the fibrous nature of muscle tissue, the yield of total RNA is low. In that case, a 105 

much larger proportion of tissue was grinded, focusing on pulverizing it into a fine powder 106 

while keeping it completely frozen. Complete homogenization achieved in TRIzol® reagent 107 

(Invitrogen, Carlsbad, CA, U.S.) using needle and syringe and high integrity total RNA was 108 

isolated according to the manufacturer’s instructions. 109 

The quantity of the isolated RNA was measured spectrophotometrically with NanoDrop® 110 

ND-1000 (Thermo Scientific), while its quality and integrity were tested on an agarose gel 111 

(electrophoresis in 1.5% w/v) and further on an Agilent Technologies 2100 Bioanalyzer 112 

(Agilent Technologies). All samples had an RNA Integrity Number (RIN) value higher than 113 

8. Following extraction, RNA from different individuals was pooled in equal quantities for 114 

each of the two tissue types. Then, an RNASeq library was constructed for each tissue 115 

following standard Illumina TruSeq protocols. The two libraries were loaded into one lane of 116 

an Illumina HiSeq2500 instrument (2x100bp). Raw reads produced are available at NCBI 117 

SRA with the project ID PRJNA397355 (Table 1). 118 

 119 

Raw read quality control 120 

Read quality was assessed with FastQC 121 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and subjected to quality control 122 

following a pipeline including multiple steps and published elsewhere (ILIAS et al. 2015) 123 

Briefly, we first used Scythe - a bayesian adapter trimmer (version 0.994 BETA) 124 

(https://github.com/vsbuffalo/scythe), to identify adapter substrings in reads. Scythe 125 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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recognizes adapter sequences taking into account quality information especially at the 3’ end 126 

where quality falls. Thus, this step was applied prior to any quality-based trimming (prior 127 

contamination rate set in 0.1 ‘-p 0.1’). Then, low quality (Phred quality threshold of 20 and 128 

minimum reads length of 45 nt) reads trimming was performed with Sickle 129 

(https://github.com/najoshi/sickle). Sickle scans the reads in sliding windows and based on 130 

the quality it determines whether a read requires trimming in the two ends or complete 131 

removal (parameters ‘pe  -g  -t sanger  -q 20  -l 45’). The surviving reads were used as input 132 

to Trimmomatic (BOLGER et al. 2014) to further remove 5' and 3' adaptor sequences and 133 

apply extra filtering steps (parameters ‘PE -phred33 ILLUMINACLIP:adapter_file.fa:2:30:10 134 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:25 MINLEN:45 CROP:99’). Finally, we 135 

used PrinSeq (SCHMIEDER AND EDWARDS 2011) to filter out low complexity sequences 136 

(threshold entropy value of 30) and perform poly A/T 5' tail (minimum of 5 A/T) trimming. 137 

 138 

Transcriptome assembly and annotation 139 

Following reads pre-processing, we pooled the filtered reads from both liver and muscle 140 

samples and built a transcriptome assembly using Trinity (GRABHERR et al. 2011) 141 

(trinityrnaseq_r2013-02-25; default kmer 25; minimum contig length of 200 nucleotides). 142 

This Transcriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank 143 

under the accession GFVG00000000, BioProject PRJNA399060 (Table 1). 144 

To evaluate the completeness of the reconstructed assembly with used the software BUSCO 145 

v2 (SIMAO et al. 2015) through gVolante (https://gvolante.riken.jp/) selecting the Core 146 

Vertebrate Gene (CVG) set (HARA et al. 2015). 147 

The assembled transcripts were annotated through a BLASTx similarity search against the 148 

SWISSPROT protein database (e-value threshold 10
-5

; keeping the top twenty hits). To 149 

improve the speed of this long process, we implemented BLASTx in parallel using 150 

ParaNOBlast (https://github.com/jacqueslagnel/ParaNoBLast) described in (LAGNEL et al. 151 

2009). Further, scan against protein domain signatures was done with InterProScan (JONES et 152 

al. 2014), which was run in parallel splitting the query in 100 subqueries and merging the 153 

https://github.com/jacqueslagnel/ParaNoBLast
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output with custom scripts. Blast and InterProScan results were input in Blast2GO V.2.8.0 154 

(CONESA et al. 2005) where GO terms and Enzyme Commision (EC) numbers were retrieved 155 

and assigned to transcripts. Finally, sequences with EC numbers were further annotated with 156 

Kyoto Encyclopedia of Gene and Genome (KEGG) pathways using custom perl scripts. 157 

 158 

Genetic marker discovery 159 

To detect single nucleotide polymorphisms (SNPs) we used GATK pipeline (MCKENNA et al. 160 

2010) according to the GATK best practices (DANECEK et al. 2011; VAN DER AUWERA et al. 161 

2013). The implemented steps included mapping of the filtered reads to the assembled 162 

transcriptome using the highly accurate and fast aligner STAR (DOBIN et al. 2013), duplicate 163 

marking and sorting with Picard (https://github.com/broadinstitute/picard) and finally variant 164 

calling and filtering (options -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -165 

filterName QD -filter "QD < 2.0"). The filtering options chosen filtered out SNPs that form 166 

clusters (more than 3 SNPs in a window of 35 bases), and variants with QualByDepth (QD) < 167 

2.0 and FisherStrand (FS) > 30 accounting for variant quality and strand bias. Finally only 168 

SNPs with at least 15 reads coverage were kept. 169 

Following the filtering steps conducted within GATK, variants without a “PASS” filter tag 170 

were excluded, ii. the variants that included insertions and deletions (indels), and SNPs with 171 

more than two alleles. Further, to avoid sampling the same SNP locus twice due to alternative 172 

splicing, we kept only those identified in the longest transcript of each locus. Finally, to check 173 

whether they belong to non-coding (3’UTR and 5’UTR) or coding regions (first, second or 174 

third codon positions), we excluded those that were identified in transcripts without ORF and 175 

analyzed the rest with a custom python script taking into account the SNP position in the 176 

longest predicted ORF and the ORF coordinates in each transcript. 177 

To detect short tandem repeats (STRs) we scanned the longest transcript of each assembled 178 

locus using the software Phobos (http://www.ruhr-uni-179 

bochum.de/ecoevo/cm/cm_phobos.htm). In particular, we detected non-exact STRs with 2–10 180 

repeat unit length and a minimum length of 20 nucleotides. A custom Perl script was used to 181 
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parse the output. Once again, for markers included on transcripts with ORFs, STRs were 182 

categorized in coding, 3’UTR or 5’UTR according to the position in relation to the longest 183 

ORF within the longest transcripts per locus using python scripts. 184 

 185 

 186 

Results & Discussion 187 

 188 

Meagre transcriptome reconstruction and annotation 189 

Illumina sequencing of the multi-individual liver and muscle libraries yielded in total 190 

523,137,020 raw reads that were subjected to a series of quality control filters (Table 2). 191 

Following filtering, 341,439,304 paired reads were kept and used for assembly and 192 

downstream analyses. 193 

 194 

Table 2. The raw read quality control process and the read survival following each filtering 195 

step. 196 

Filtering steps Surviving reads Muscle Surviving reads Liver 

Raw 280,804,390 242,332,630 

Scythe* 280,804,390 242,332,630 

Sickle 250,526,202 216,487,756 

Trimmomatic 209,252,073 181,232,317 

PrinSeq** 182,802,502 158,636,802 

*NOTE: Scythe does not eliminate sequences 197 

**NOTE: Only paired reads surviving PrinSeq filtering step were used for assembly and downstream 198 

analyses 199 

 200 
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The high quality reads from both muscle and liver libraries were pooled and used for 201 

reconstructing the reference transcriptome of meagre. The strategy followed involved pooling 202 

all liver information from multiple individuals in a single library and the same for muscle. 203 

This design enables the identification of genetic markers across the individuals’ transcriptome 204 

in a cost-effective manner, as only two libraries are constructed and sequenced deeply. 205 

However, it holds limitations, first in terms of identifying markers at the individual level, and 206 

second pooling individuals bears drawbacks especially regarding the unequal representation 207 

of each individual’s alleles in the final read count leading to erroneous allele frequency 208 

estimations in population studies (SCHLÖTTERER et al. 2014), which were not the scope of 209 

this study. 210 

Following assembly, the resulted transcriptome comprised of 95,945 transcripts belonging to 211 

80,807 loci with N50 value of 2,183, average length of 1,059 nucleotides and 46.19% GC 212 

content. To evaluate to completeness of the assembly, we ran BUSCOv2 and gVolante to find 213 

that out of 233 queried genes, 208 (89.27) were complete, 15 were partial (summing up to 214 

95.71% complete and partial genes) and only 10 genes (4.29%) were missing. The results 215 

revealed a satisfying assembled transcriptome covering the great majority of meagre genes. 216 

However, future sequencing of more tissue types would lead to a more complete 217 

transcriptome in the species. 218 

To annotate the assembly, we conducted a blastx similarity search against the highly curated 219 

SWISSPROT database. The results revealed that 33,638 out of 95,945 transcripts were 220 

significantly homologous to a known SWISSPROT sequence. Finally, targeted BLASTN 221 

search of meagre transcripts against tilapia cDNA retrieved 15,589 unique tilapia genes as top 222 

hits, once again confirming the thorough representation of the expected geneset in the 223 

transcriptome. 224 

Following similarity search through blast, GO mapping resulted in 31,986 annotated 225 

sequences. The most important GO terms in the ‘biological process’ ontology at the level 2 226 

are shown in Figure 1. Search for InterPro domains resulted in 46,647 sequences annotated 227 

with protein domains and raised the number of GO annotated transcripts to 34,252. Then, EC 228 
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number mapping through GO terms resulted in 1,016 potential enzymes in 8,682 total 229 

transcripts with EC:6.3.2.19 ‘ubiquitin-protein ligase’ as the top enzyme group in meagre 230 

transcriptome, followed by EC:3.6.1.3 (adenosine triphosphatase) and EC:2.3.1.48 (histone 231 

acetyltransferase). Based on EC mapping, we identified the corresponding KEGG pathways 232 

to find that the EC-annotated 8,682 sequences are involved in 382 total KEGG pathways. The 233 

most highly represented pathway was MAPK signaling pathway, followed by Purine 234 

metabolism and PI3K-Akt signaling pathway. A summary of the annotation results is 235 

presented in Table 3 and detailed annotation is given in Supplementary Table 2. 236 

 237 

 238 

Figure 1. Gene Ontology functional characterization of meagre assembled transcriptome. 239 

Terms are shown for biological process level 2. 240 

 241 

  242 
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Table 3. Annotation Summary 243 

Annotation steps Contigs % Contigs 

 95,945  100 

BLAST 33,638 35.05 

InterPro 46,647 48.61 

With IPR number 27,907 29.09 

With > =1GO 34,252 35.70 

Blast2Go annotated 33,220 34.62 

EC 8,440 8.80 

KEGG 380 pathways 2,475 2.58 

 244 

Meagre genetic markers 245 

Following the transcriptome characterization of meagre, we aimed at scanning for both SNPs 246 

and STRs across meagre transcriptome. 247 

Our SNP search revealed a total of 42,933 high quality markers located in 14,544 transcripts 248 

(Supplementary Table 3). A GO enrichment analysis (FDR 0.05) of the contigs containing 249 

SNPs compared to the assembly revealed a significant underrepresentation of genes related to 250 

the nervous system (Figure 2; Supplementary Table 4), which might reflect the evolutionary 251 

pressure for conservation in this group of genes. 252 
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 253 

 254 

Figure 2. Top significantly over and under represented GO categories of SNP-containing 255 

contigs compared to the whole meagre transcriptome (only GO terms with FDR cut-off < 10
-256 

15
 are shown). 257 

 258 

Downstream analyses showed that most SNPs were located in the UTRs (15,149 SNPs) and 259 

at the third codon position (13,768 SNPs) in accordance to the sequence conservation pattern 260 

observed in coding sequences. SNPs that fall within the predicted open reading frame, result 261 

mostly to synonymous changes for the third codon position (731 non-synonymous and 13,037 262 

synonymous SNPs), only in non-synonymous changes for the second codon position (2,937 263 

SNPs) and mainly in non-synonymous changes for the first codon position (3,174 non-264 

synonymous and 580 synonymous SNPs), as expected from the genetic code degeneracy 265 

(Figure 3). 266 
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Based on the frequency of SNPs found (1.22 SNPs per 1,000 bp), we describe a relatively low 267 

rate of polymorphism in the species probably reflecting the inbreeding that has taken place. 268 

Examples of other teleosts with reported higher SNP rate are turbot (one SNP per 302 bp; 269 

VERA et al. 2013), channel catfish (one SNP per 93 bp; LIU et al. 2016) and salmon with only 270 

slightly higher SNP rate (2.52 SNPs per 1,000 bp; TINE et al. 2014). 271 

Our STR search revealed 20,581 markers ranging from 2-10 unit length transcriptome-wide 272 

(Supplementary Table 5). Following breaking down of the discovered STRs to those that fall 273 

within the coding regions (14,546 STRs) and those that do not, we show that 3-mer STRs 274 

(with unit length of 3, and then 6 and 9) fell into the first category (coding). The distribution 275 

of the 3-mer STRs are significantly higher than expected in the coding regions and 276 

significantly lower in the UTRs (chi-square p-value < 0.00) as expected due to the non-277 

disturbance of the open reading frame by those repeats (Figure 4). The rest were mostly in the 278 

UTRs or in transcripts without ORFs. 279 

The distribution of both marker types in the different regions of the transcriptome is 280 

consistent with the expected distribution of genetic variants as discovered in other studies as 281 

well (e.g. MANOUSAKI et al. 2014) and provide a high quality dataset for future genetic 282 

analysis in this new but important to aquaculture species. 283 

 284 

 285 
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Figure 3. Distribution of SNPs along the coding and non-coding part of the transcripts. SNPs 286 

found within coding regions are separated to first, second and third position and are 287 

characterized as synonymous or nonsynonymous based on causing or not an amino acid shift 288 

in the protein sequence. 289 

 290 

 291 

 292 

Figure 4. Distribution of STRs along the coding and non-coding part of the transcripts. 293 

 294 

Meagre transcriptome gene content 295 

Following the assembly annotation and genetic marker discovery, we sought to identify 296 

transcripts that might be involved in important biological functions. For example, growth is 297 

one of meagre’s most important phenotypic traits for aquaculture. To that end, we extracted 298 

the sequences associated to growth by selecting transcripts with the search term ‘growth’ 299 

within GO annotation descriptions through Blast2GO. Our search revealed 7,121 sequences 300 

(Supplementary Table 6). The SNPs and STRs of those particular genes might serve as 301 

valuable resource for identifying variants linked to this critical trait of the species. 302 
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To further explore the gene content of meagre, we searched the assembled transcriptome for 303 

sequences that include representative terms in the GO annotations. More specifically, we 304 

found 3,144 sequences related to ‘immune’ functions, 15,274 genes involved in 305 

‘development’, 4,300 genes involved in “stress”, 1,012 genes involved in reproduction, 5,196 306 

genes involved in metabolism and 2,168 genes involved in behavior (Supplementary Table 6). 307 

 308 

Conclusions 309 

Our study has built the first transcriptome assembly and at the same time the first next-310 

generation based genomics resource for meagre. Following the annotated transcriptome, we 311 

launched a genetic marker discovery pipeline that led to the construction of a valuable dataset 312 

of SNPs and STRs transcriptome-wide coming out from a pool of 16 individuals. The low 313 

rate of polymorphism discovered imply that the transcriptome of meagre has been possibly 314 

shaped by inbreeding, a factor that raises even more the risk for further inbreeding through 315 

aquaculture. The provided assembly and genetic markers dataset will lay the groundwork for 316 

further studies of meagre biology and genetics and will set the basis for future applications of 317 

genetic breeding and marker-assisted selection for the species. 318 

 319 
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Supplementary Tables Legends 329 

Supplementary Table 1. Summary including weight/length of sampled individuals. 330 
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Supplementary Table 2. Detailed annotation of meagre transcriptome including sequence 331 

description as defined by Blast2GO based on the annotation of the blast hits, the number of 332 

blast hits, the minimum e-value, the mean percentage of similarity, the number of GO terms, 333 

the assigned GO terms, EC numbers and InterProScan results. 334 

Supplementary Table 3. The high quality SNP dataset discovered in meagre transcriptome. 335 

SNPs that remain after filtering and are located in the longest open reading frame of each 336 

gene are reported. For each SNP, provided information include: the respective contig, the 337 

open reading frame selected (ORF_Region), the starting point of the ORF (Start_ORF) and 338 

the position of the SNP (SNP_pos). Each SNP is characterized as coding or noncoding 339 

according to whether it falls inside or outside the coding regions and each noncoding SNP is 340 

annotated as upstream or downstream depending on whether it is found in the 5’ or the 3’ 341 

UTR of the gene. Further, SNPs that fall within the coding regions are broken down to those 342 

that fall within the first, second or third codon position and are also characterized as 343 

synonymous or nonsynonymous depending on whether the two alleles code for the same 344 

amino acid or not. 345 

Supplementary Table 4. GO terms that are over- or under-represented in the SNP-containing 346 

genes compared to the whole assembly through a Fisher’s exact test (FDR threshold 0.05). 347 

The test is run through Blast2GO for the three GO categories (P: Biological Process, C: 348 

Cellular Component, F: Molecular Function). 349 

Supplementary Table 5. The high quality STR dataset discovered in meagre transcriptome. 350 

For each STR information regarding the respective contig (Seq ID), the unit length, the 351 

number of units in the reference (# of units), the start and stop position in the contig (start, 352 

stop), the total length (length), the length ignoring insertions/deletions (norm_length), number 353 

of mismatches (mis), number of insertions (ins), number of deletions (del), the unit motif 354 

(motif) and the total STR sequence (seq) are given. 355 

Supplementary Table 6. The gene content of meagre transcriptome. The list and annotation 356 

of contigs that include “growth”, “behaviour”, “development”, “reproduction”, “metabolism”, 357 
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“stress”, “immune” within the GO terms description and may have a possible role in the 358 

respective functions. 359 

 360 
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