20 research outputs found

    Regulating repression : roles for the Sir4 N-terminus in linker DNA protection and stabilization of epigenetic states

    Get PDF
    The Gasser laboratory is supported by the Novartis Research Foundation and the EU training network Nucleosome 4D. SK was supported by an EMBO long-term fellowship, a Schrodinger fellowship from the FWF, and the Swiss SystemsX.ch initiative/C-CINA; HCF by an EMBO long-term fellowship.Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM) loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR-mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747-1,358) must be complemented with an N-terminal domain (Sir4N; residues 1-270), expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84) derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A), which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR-mediated silencing: it contributes to epigenetic repression by stabilizing the SIR-mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner.Publisher PDFPeer reviewe

    Modulation of drug sensitivity in yeast cells by the ATP‐binding domain of human DNA topoisomerase IIα

    Get PDF
    Epipodophyllotoxins are effective antitumour drugs that trap eukaryotic DNA topoisomerase II in a covalent complex with DNA. Based on DNA cleavage assays, the mode of interaction of these drugs was proposed to involve amino acid residues of the catalytic site. An in vitro binding study, however, revealed two potential binding sites for etoposide within human DNA topoisomerase IIα (htopoIIα), one in the catalytic core of the enzyme and one in the ATP‐binding N‐terminal domain. Here we have tested how N‐terminal mutations that reduce the affinity of the site for etoposide or ATP affect the sensitivity of yeast cells to etoposide. Surprisingly, when introduced into full‐length enzymes, mutations that lower the drug binding capacity of the N‐terminal domain in vitro render yeast more sensitive to epipodophyllotoxins. Consistently, when the htopoIIα N‐terminal domain alone is overexpressed in the presence of yeast topoII, cells become more resistant to etoposide. Point mutations that weaken etoposide binding eliminate this resistance phenotype. We argue that the N‐terminal ATP‐binding pocket competes with the active site of the holoenzyme for binding etoposide both in cis and in trans with different outcomes, suggesting that each topoisomerase II monomer has two non‐equivalent drug‐binding site

    Modulation of drug sensitivity in yeast cells by the ATP-binding domain of human DNA topoisomerase IIα

    No full text
    Epipodophyllotoxins are effective antitumour drugs that trap eukaryotic DNA topoisomerase II in a covalent complex with DNA. Based on DNA cleavage assays, the mode of interaction of these drugs was proposed to involve amino acid residues of the catalytic site. An in vitro binding study, however, revealed two potential binding sites for etoposide within human DNA topoisomerase IIα (htopoIIα), one in the catalytic core of the enzyme and one in the ATP-binding N-terminal domain. Here we have tested how N-terminal mutations that reduce the affinity of the site for etoposide or ATP affect the sensitivity of yeast cells to etoposide. Surprisingly, when introduced into full-length enzymes, mutations that lower the drug binding capacity of the N-terminal domain in vitro render yeast more sensitive to epipodophyllotoxins. Consistently, when the htopoIIα N-terminal domain alone is overexpressed in the presence of yeast topoII, cells become more resistant to etoposide. Point mutations that weaken etoposide binding eliminate this resistance phenotype. We argue that the N-terminal ATP-binding pocket competes with the active site of the holoenzyme for binding etoposide both in cis and in trans with different outcomes, suggesting that each topoisomerase II monomer has two non-equivalent drug-binding sites

    Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination

    Full text link
    Chromatin in the interphase nucleus moves in a constrained random walk. Despite extensive study, the molecular causes of such movement and its impact on DNA-based reactions are unclear. Using high-precision live fluorescence microscopy in budding yeast, we quantified the movement of tagged chromosomal loci to which transcriptional activators or nucleosome remodeling complexes were targeted. We found that local binding of the transcriptional activator VP16, but not of the Gal4 acidic domain, enhances chromatin mobility. The increase in movement did not correlate strictly with RNA polymerase II (PolII) elongation, but could be phenocopied by targeting the INO80 remodeler to the locus. Enhanced chromatin mobility required Ino80's ATPase activity. Consistently, the INO80-dependent remodeling of nucleosomes upon transcriptional activation of the endogenous PHO5 promoter enhanced chromatin movement locally. Finally, increased mobility at a double-strand break was also shown to depend in part on the INO80 complex. This correlated with increased rates of spontaneous gene conversion. We propose that local chromatin remodeling and nucleosome eviction increase large-scale chromatin movements by enhancing the flexibility of the chromatin fiber

    Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination

    No full text
    Chromatin in the interphase nucleus moves in a constrained random walk. Despite extensive study, the molecular causes of such movement and its impact on DNA-based reactions are unclear. Using high-precision live fluorescence microscopy in budding yeast, we quantified the movement of tagged chromosomal loci to which transcriptional activators or nucleosome remodeling complexes were targeted. We found that local binding of the transcriptional activator VP16, but not of the Gal4 acidic domain, enhances chromatin mobility. The increase in movement did not correlate strictly with RNA polymerase II (PolII) elongation, but could be phenocopied by targeting the INO80 remodeler to the locus. Enhanced chromatin mobility required Ino80's ATPase activity. Consistently, the INO80-dependent remodeling of nucleosomes upon transcriptional activation of the endogenous PHO5 promoter enhanced chromatin movement locally. Finally, increased mobility at a double-strand break was also shown to depend in part on the INO80 complex. This correlated with increased rates of spontaneous gene conversion. We propose that local chromatin remodeling and nucleosome eviction increase large-scale chromatin movements by enhancing the flexibility of the chromatin fiber

    Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro.

    No full text
    At yeast telomeres and silent mating-type loci, chromatin assumes a higher-order structure that represses transcription by means of the histone deacetylase Sir2 and structural proteins Sir3 and Sir4. Here, we present a fully reconstituted system to analyze SIR holocomplex binding to nucleosomal arrays. Purified Sir2-3-4 heterotrimers bind chromatin, cooperatively yielding a stable complex of homogeneous molecular weight. Remarkably, Sir2-3-4 also binds naked DNA, reflecting the strong, albeit nonspecific, DNA-binding activity of Sir4. The binding of Sir3 to nucleosomes is sensitive to histone H4 N-terminal tail removal, while that of Sir2-4 is not. Dot1-mediated methylation of histone H3K79 reduces the binding of both Sir3 and Sir2-3-4. Additionally, a byproduct of Sir2-mediated NAD hydrolysis, O-acetyl-ADP-ribose, increases the efficiency with which Sir3 and Sir2-3-4 bind nucleosomes. Thus, in small cumulative steps, each Sir protein, unmodified histone domains, and contacts with DNA contribute to the stability of the silent chromatin complex

    Mitotic Expression of Spo13 Alters M-Phase Progression and Nucleolar Localization of Cdc14 in Budding Yeast

    No full text
    Spo13 is a key meiosis-specific regulator required for centromere cohesion and coorientation, and for progression through two nuclear divisions. We previously reported that it causes a G2/M arrest and may delay the transition from late anaphase to G1, when overexpressed in mitosis. Yet its mechanism of action has remained elusive. Here we show that Spo13, which is phosphorylated and stabilized at G2/M in a Cdk/Clb-dependent manner, acts at two stages during mitotic cell division. Spo13 provokes a G2/M arrest that is reversible and largely independent of the Mad2 spindle checkpoint. Since mRNAs whose induction requires Cdc14 activation are reduced, we propose that its anaphase delay results from inhibition of Cdc14 function. Indeed, the Spo13-induced anaphase delay correlates with Cdc14 phosphatase retention in the nucleolus and with cyclin B accumulation, which both impede anaphase exit. At the onset of arrest, Spo13 is primarily associated with the nucleolus, where Cdc14 accumulates. Significantly, overexpression of separase (Esp1), which promotes G2/M and anaphase progression, suppresses Spo13 effects in mitosis, arguing that Spo13 acts upstream or parallel to Esp1. Given that Spo13 overexpression reduces Pds1 and cyclin B degradation, our findings are consistent with a role for Spo13 in regulating APC, which controls both G2/M and anaphase. Similar effects of Spo13 during meiotic MI may prevent cell cycle exit and initiation of DNA replication prior to MII, thereby ensuring two successive chromosome segregation events without an intervening S phase
    corecore