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Abstract

Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at
subtelomeric regions and homothallic mating type (HM) loci in budding yeast. We have performed a detailed biochemical
and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR–mediated repression of
HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-
terminal domain (Sir4C, residues 747–1,358) must be complemented with an N-terminal domain (Sir4N; residues 1–270),
expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and
Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex.
Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less
effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of
subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively
phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of
two major phosphoacceptor sites (S63 and S84) derepresses natural subtelomeric genes when combined with a
serendipitous mutation (P2A), which alone can enhance the stability of either the repressed or active state. The triple
mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-
terminus plays two roles in SIR–mediated silencing: it contributes to epigenetic repression by stabilizing the SIR–mediated
protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner.
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Introduction

The eukaryotic genome is organized into euchromatic and

heterochromatic domains that generally reflect their potential for

gene expression. Chromatin repressed by the Silent information

regulator (SIR) complex in the budding yeast Saccharomyces cerevisiae

shares many key features with heterochromatin in higher

eukaryotes. Notably, it has hypoacetylated nucleosomes [1,2], is

less accessible to DNA-binding enzymes than is euchromatin [3–

5], it replicates late in S phase [6] and is spatially sequestered at

the nuclear envelope or near the nucleolus [7]. The genes found

within heterochromatin are generally silent, and in complex

organisms this gene repression is crucial for the proper develop-

ment of differentiated tissues and organs [8].

Unlike the situation in other eukaryotes, where histone H3

lysine 9 methylation and its specific ligands mediate repression,

heritable transcriptional silencing in S. cerevisiae relies on the

association of a trimeric SIR complex with unmodified histones

(reviewed in [9–12]). This heterotrimeric complex contains

equimolar amounts of Sir2, Sir3 and Sir4 [13], each of which is

essential for the repression of promoters at the homothallic mating

type loci, HMR and HML [14] and in subtelomeric domains [15].

In analogy to centromeric position effect variegation in flies,

repression at telomeres has been called telomere position effect, or

TPE.

The SIR complex is targeted to the genes it represses by

interacting with sequence-specific DNA-binding proteins that bind

silencers or telomeric TG repeats. This binding initiates or

‘‘nucleates’’ the formation of silent chromatin on adjacent genes.

Repressor activator protein 1 (Rap1; [16]) is a key factor for SIR-

mediated repression, because it has high affinity sites both at

telomeres and in silencer elements [16,17]. Furthermore, Rap1

interacts with both Sir3 and Sir4 [18]. HM silencer elements contain

sites for two further sequence-specific factors, namely Abf1 (ARS-

binding factor 1) and ORC (Origin recognition complex) [19,20].

Abf1 recruits the SIR complex by binding to Sir3 [10], and the

largest subunit of ORC, Orc1, enhances SIR recruitment by

binding Sir1, an intermediary protein that in turn binds Sir4 [21].
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The initial recruitment of Sir4 or Sir3 to telomeric TG-repeats

or to silencers, brings in Sir2, a histone deacetylase [22–24], which

generates high-affinity binding sites for Sir3 by removing

acetylation from the histone N-termini of nearby nucleosomes

[25–27]. Sir3 binds nucleosomes in a manner that is highly

sensitive to histone H4 K16 acetylation [28]. The sequential

activation of this NAD-dependent histone deacetylase, its gener-

ation of high affinity binding sites for Sir3, and their occupancy by

the trimeric SIR complex, allow a repressive chromatin structure

to propagate along the chromatin fiber [29,30]. Whereas Sir4 can

be recruited to silencer elements independently of Sir2 and Sir3,

the spreading of the SIR complex and formation of a silent

domain require all three proteins [30,31]. Mutations that disrupt

the interaction between Sir3 and Sir4 compromise repression of

the HM loci and of genes at telomeres [32,33].

At 152 kDa, Sir4 is the largest and the least well conserved of

the Sir proteins [34]. Its non-globular structure has rendered it

refractory to biochemical analysis, except when expressed together

with Sir2 [13]. Sir2 and Sir4 form a stable heterodimer, which is

mediated by residues 737–839 of Sir4 and a large pocket situated

between Sir2’s non-conserved N-terminus and its C-terminal

catalytic domain (R. Sternglanz and R-M. Xu, personal commu-

nication). This tight interaction enhances the de-acetylation

activity of Sir2 in vitro [13,35]. Sir4 also interacts with an array

of additional factors that are required for efficient repression,

leading to its designation as a scaffold for silent chromatin

assembly [10,11]. Importantly, the C-terminal coiled-coil of Sir4

(residues 1257–1358) dimerizes to generate Sir3-binding sites on

its outer surface [36,37], and this interphase is essential for SIR-

mediated repression [32]. This coiled-coil domain also binds

Yku70 and Rap1 [38–41]. Yku70’s interaction partner, Yku80,

binds two sites within Sir4, one at the Sir4 N-terminus and one in

the C-terminal 627 residues [42,43]. The Ku heterodimer

(Yku70/Yku80) not only facilitates SIR recruitment at telomeres,

but helps anchor telomeres and silent chromatin at the nuclear

envelope, which can enhance the efficiency of SIR-mediated

repression [40,44,45]. A second, more central domain of Sir4

called PAD (residues 950–1262; partitioning and anchoring

domain) also mediates anchorage to the nuclear envelope

[42,46,47]. The PAD domain of Sir4 binds a nuclear envelope-

associated protein called Esc1 (Establishes silent chromatin 1)

[47,48]. Disruption of ESC1 and YKU70 or YKU80 releases

telomeres from the nuclear envelope, and selectively de-represses

TPE, while repression at HM loci remains intact [42,49,50].

It is not surprising that the C-terminal half of Sir4 is crucial for

silencing, given that it mediates protein-protein interactions with

Rap1, Sir2, Sir3, Sir4, Yku70/Yku80 and Esc1. Although we

know much less about the functions of the N-terminal part of Sir4,

Marshall et al. [51] reported that the N-terminus of Sir4 was

required for silencing at the HM loci. They showed that expression

in trans of an N-terminal fragment restored mating in the presence

of a silencing-deficient C-terminal fragment of Sir4 (the final 45%,

starting from about residue 744) [51]. Since then, the first 270

residues of Sir4 (Sir4N) were shown to bind DNA in vitro [52] and

to interact with three proteins: Sir1 [21], Yku80 [43] and Sif2 [53],

a component of the SET3C deacetylase complex [53,54].

Although Sir4 binding to Sir1 or Yku80 facilitates SIR complex

recruitment to HM loci and telomeres, neither interaction is

essential for SIR-mediated silencing [49,55,56]. Thus, it remained

mysterious what function the Sir4 N-terminus might have.

Here we have explored the function of the N- and C-terminal

domains of Sir4 in silencing at both the HM loci and yeast

telomeres by means of biochemical and genetic assays. We re-

examined the ability of the N- and C-termini to work together in

trans and found, surprisingly, that a slightly shorter C-terminal

fragment (Sir4C; residues 747–1358) than that used by Marshall et

al. [51], is sufficient to silence HMR and HML in a sir4D
background. Neither this C-terminal domain nor a fusion protein

of Sir4C to the N-terminal 270 residues, however, was sufficient to

complement fully a sir4 deletion for TPE. From this we conclude

that the Sir4 N-terminus is dispensable for formation of a

repressed chromatin structure, yet it is needed at telomeres or in

situations in which SIR complex recruitment is compromised.

We confirmed by biochemical reconstitution assays that

recombinant Sir4C is sufficient to form a complex with Sir2 and

Sir3 that binds nucleosomal arrays in vitro and deacetylates histone

H4 K16ac. However, Sir4C-containing complexes bind with a

four-fold lower affinity and confer less protection of linker DNA

from micrococcal nuclease attack. Thus, the DNA binding affinity

of Sir4N contributes substantially to the tight association of the

SIR complex with chromatin, which becomes important when

recruitment is compromised. To see if silencing is regulated

through Sir4, we mapped phosphorylation sites within Sir4N in

vivo and in vitro, and found that this domain is a major target for

phosphorylation in living cells. Two key phosphoacceptor sites for

the cyclin-dependent kinase, serine 63 and serine 84, influence the

stability of repression at most telomeres showing TPE. We propose

that Sir4N phosphorylation regulates the stability of subtelomeric

repression during the cell cycle and possibly in response to

environmental stress.

Results

Sir4C is sufficient for silencing at intact HML and HMR loci
To examine the function of the N-terminus of Sir4, we first

repeated the assay of Marshall et al. [51] in which N- and C-

terminal fragments of Sir4 were expressed in trans and scored for

the restoration of silencing at HML in a sir4D background. We

created strains with either a full deletion of SIR4 (sir4D) or with a

partial deletion of the endogenous SIR4 locus (sir4N), such that

only its N-terminal 270 amino acids were expressed. We then

expressed full-length Sir4 or various C-terminal fragments of the

Author Summary

Three Silent Information Regulator (SIR) proteins Sir2, Sir3,
and Sir4 are involved in the epigenetic gene silencing of
the homothallic mating (HM) loci and of telomere-proximal
genes in budding yeast. They bind as a heterotrimeric
complex to chromatin, repressing the underlying genes.
Sir2 has an essential histone deacetylase activity, and Sir3
binds nucleosomes, with a high specificity for unmodified
histones. We explored Sir4, whose role had largely
remained a mystery. We report here that Sir4 N- and C-
terminal domains have distinct functions: The Sir4 C-
terminus binds all proteins essential for SIR–mediated
silencing and is sufficient to repress HM loci, but
surprisingly it is not sufficient to efficiently repress at
telomeres. The Sir4 N-terminus binds DNA, which strength-
ens the SIR–chromatin interaction and helps target Sir4 to
telomeric loci. In addition the Sir4 N-terminus binds
sequence-specific factors that recruit Sir4 to sites of
repression. We find that the Sir4 N-terminus is a target of
mitotic phosphorylation. Mutation of the phosphoaccep-
tor sites indicates that they help fine-tune subtelomeric
repression. We propose therefore that phosphorylation of
the Sir4 N-terminal domain modulates epigenetic repres-
sion at telomeres in response to cell cycle and/or stress
situations.
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protein from CEN-ARS plasmids (pRS) carrying the full SIR4

promoter and terminator (Figure 1A, 1B). Because overexpression

of either full-length protein or fragments of Sir4 derepress gene

silencing [53], we chose conditions that reproduced as closely as

possible the endogenous Sir4 protein levels (Figure S1B and data

not shown). Quantitative mating assays can be used to determine

the degree of repression at HML, because mating is compromised

by coincident expression of a and a mating type information. In

contrast to the findings of Marshall et al. [51], expression of a C-

terminal fragment of Sir4 (Sir4C, residues 747–1358) alone was

sufficient to repress HML, as indicated by the restoration of mating

in a MATa sir4D strain (Figure 1C, Table 1). Consistently,

expression of Sir4C also repressed a TRP1 reporter inserted at

HMR in both the sir4D and sir4N backgrounds (Figure 1D,

Table 1).

In trying to explain the discrepancy between our findings and

those of Marshall and colleagues, we noticed that they had used a

galactose-inducible Sir4 C-terminal fragment that was a few

amino acids longer than ours, and co-expressed as well a slightly

longer N-terminal fragment than we used [51]. Intriguingly, our

analysis of a longer C-terminal fragment (residues 731–1358;

Sir4731–1358), showed that it failed to repress an HMR::TRP1

reporter, either alone (in a sir4D background) or when expressed

with Sir4N (in a sir4N background; Figure S1A). Immunoblotting

showed that steady-state levels of the Sir4731–1358 fragment were

much lower than of those of the shorter Sir4C (Figure S1B). The

instability of the Sir4731–1358 fragment would explain its inability to

repress HMR; indeed, it is likely that the fragment used by

Marshall and colleagues was also unstable, and therefore did not

silence on its own. We tried also expressing a longer (330 residue)

N-terminal fragment with both long and short Sir4C fragments,

but observed no differences in the mating assay compared to the

shorter Sir4N fragment (data not shown). Our results suggest that

a stable 611-residue C-terminal fragment of Sir4 is sufficient to

repress both HM loci.

The N-terminus of Sir4 contributes to repression at HM
loci with incomplete silencers

To date, the N-terminus of Sir4 was implicated in recruiting the

SIR complex to silencers or to telomeres through its affinity for

Sir1 or Yku80, respectively [21,40,41,56,57]. The interactions that

recruit the SIR complexes to silencers are, however, redundant

[20]. Therefore, we next tested the impact of Sir4N on silencing

under conditions of compromised recruitment, that is, in strains

lacking either Sir1 or Yku70 which eliminates Yku80 function as

well (Figure 2). The expression of Sir4C in a sir1D strain could still

restore silencing of HML, either in the absence (sir4D) or the

presence of Sir4N (sir4N, Figure 2A). Consistent with it being a

Figure 1. A truncated Sir4C is sufficient for silencing at HML and HMR. A) Scheme of Sir4 indicating important domains and their interactions.
The N-terminal domain of Sir4 (Sir4N) is in red, the C-terminal domains in green (full Sir4C = 747–1358; light green PAD = 950–1262; dark green coiled
coil domain = 1262–1358). B) Scheme of plasmids expressing Sir4 constructs. The plasmid’s original promoter and terminator were replaced with a
1 kb sequence of the SIR4 59 region and 250 bp of the 39 region containing the endogenous promoter/terminator information. The same plasmid
construct with different markers was used as needed. C) Silencing at HML of strains with various Sir4 domains was assayed by quantitative mating to
a tester strain (GA858). The endogenous SIR4 copy was full length (SIR4; GA503), a C-terminal deletion (sir4N; GA5809) or a complete deletion of Sir4
(sir4D; GA5822). C-terminal or full length Sir4 was added back on a plasmid. Mating efficiency was normalized to the wild-type strain; data represent
mean value 6 s.e.m, n.d. undetermined values. D) Plasmids similar to (C), but silencing at HMR was assayed using a TRP1 reporter (GA484, GA6072,
GA5886). Serial dilutions of transformed strains were grown on control plates selecting for the plasmid only or on plates selecting for the plasmid and
growth without tryptophan (monitoring repression of TRP1).
doi:10.1371/journal.pgen.1002727.g001
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direct binding partner of Sir1, Sir4N expression did not enhance

silencing in the sir1D background (Figure 2A). On the other hand,

in the sir4D yku70D background, Sir4C only supported mating at

30% of wild-type levels. In this case, mating efficiency was indeed

enhanced by co-expression of Sir4N (compare SIR4C in sir4D and

sir4N, Figure 2A). This confirms that the N- and C-termini of Sir4

can complement in trans at the HML locus, as reported by

Marshall et al. (1987), although in our hands, this is true only in

yku70D cells.

To assess more directly whether Sir4N compensates for the

absence of other recruitment sites at silencers, we used a

HMR::TRP1 reporter strain that lacks either the A sequence

(ORC–Sir1-binding site) or the B sequence (Abf1-binding site)

within the E silencer (Figure 2B) [19,20]. When we deleted the

ORC–Sir1-binding element (HMR-EDA), Sir4C was no longer

sufficient to repress the reporter gene at HMR (Figure 2B, Table 1).

Similarly, in the absence of the Abf1-binding site (HMR-EDB,

Figure 2C, Table 1), Sir4C did not restore silencing, either with or

without the Sir4N fragment. Thus, Sir4C is not sufficient for

silencing at an HMR locus in which the silencers are weakened by

deletion of a binding site for one of the recruitment factors.

The co-expression of Sir4C and Sir4N in trans did not enhance

silencing at compromised silencers, as they did in the yku70 mutant

(Figure 2A–2C). This may be explained if Sir4N interacts only

weakly with the SIR complex. To test this possibility, we tethered

the Sir4N and Sir4C domains with a short linker peptide, to form

a stable fusion protein (Sir4N–C; Figure 1A). Importantly, when

expressed in a sir4D background, Sir4N-C repressed the reporter

gene as effectively as full-length Sir4 at the silencer-compromised

HMR loci (HMR-EDA and HMR-EDB; Figure 2D, Table 1). The

strains expressing Sir4N-C were also competent for mating (Figure

S2A), albeit with lower efficiency than cells expressing Sir4C

alone, possibly due to an altered growth rate (see legend, Figure

S2). These data confirm a role for the N-terminus of Sir4 in

silencing the HM loci when the binding of recruitment factors is

compromised. Indeed, at HMR with weakened silencers, the

expression of a Sir4 N-terminal fragment along with Sir4C allows

repression, whereas Sir4C alone does not.

Linking Sir4N to Sir4C increases but does not fully restore
telomeric silencing

To test whether silencing at telomeres requires the N-terminus

of Sir4, we monitored expression of a URA3 reporter gene at

telomere 7L (Tel7L::URA3) [4] by assaying growth in the absence

of uracil in a strain that lacks Ppr1, the transcription factor

responsible for inducing URA3 in auxotrophic conditions [58]. In

contrast to repression at the HM loci, telomeric silencing could not

be established by expressing Sir4C (Figure 3A, Table 1) nor by co-

expressing Sir4C with Sir4N in trans (Figure S2B, Table 1). This

was true not only for URA3 expression at Tel7L, but also for the

ADE2 reporter gene expression at Tel5R (Figure S2C, Table 1).

We also monitored Tel7L::URA3 repression by counter-selecting

with the drug 5-FOA, with similar results (Figure 3A).

Given that repression at HMR with weakened silencers was

enhanced by expression of a Sir4N-C fusion, we tested the effect of

this hybrid on TPE. Surprisingly, expression of the Sir4N-C fusion

in a sir4D strain failed to repress either Tel7L::URA3 or

Tel5R::ADE2 reporters in the standard drop assay (Figure 3A,

Figure S2C, Table 1). We also assayed silencing by measuring

mRNA levels of subtelomeric genes from telomeres 6R and 9R by

quantitative PCR (QPCR; Figure 3C). Both genes were dere-

pressed in cells expressing only Sir4C or Sir4N-C. For Tel9R we

observed partial repression by Sir4N–C compared to sir4D
(Figure 3B, Table 1). Intriguingly, the levels of the HMLa1 gene
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were only partial reduced when Sir4C was expressed, whereas

expression of Sir4N–C conferred repression to near-background

levels (Figure 3B). A similar effect was observed at Tel7L::URA3

when URA3 was transcribed at basal levels (i.e. growth in the

presence of uracil and in the absence of Ppr1; Figure 3B). In this

case, Sir4N–C repressed transcription to background levels, unlike

in the drop assay in the absence of uracil (Figure 3A), which

strongly induces transcription from the URA3 promoter.

Resistance to rapamycin is a sensitive means to monitor native

telomeric silencing, as growth on the drug requires expression of

multiple stress genes located near telomeres, which are normally

silenced by the SIR complex [59]. We therefore monitored the

level of stress gene expression by scoring for resistance to

rapamycin in Sir4-, Sir4C- and Sir4N–C-expressing cells. Where-

as SIR4+ cells fail to grow on rapamycin, intriguingly, both Sir4C-

and Sir4N–C-expressing cells behaved like sir4D when grown in

the presence of rapamycin (Figure 3A). This argues that neither

Sir4C nor Sir4N–C can prevent the induction of natural

subtelomeric genes by stressful conditions (Figure 3A), suggesting

that full-length Sir4 is needed for native subtelomeric repression,

although not at HM loci.

Transcriptional repression generally correlates with the binding

of Sir proteins throughout the silent domain, and we therefore

tested the binding of Sir4 to HML and telomeres by chromatin

immunoprecipitation (ChIP). We detected a clear enrichment of

Sir4, Sir4C and Sir4N-C at HML-E and HML-a1 (Figure S2F).

Consistent with the silencing assays, on the other hand, only full

length Sir4 was strongly enriched at telomeres (Figure S2F). This

confirms that full-length and truncated Sir4 proteins are bound at

the sites that are silenced robustly, and shows again that Sir4C is

not sufficient for binding in subtelomeric domains.

To see if Sir4C would be sufficient for silencing at telomeres if

we enhanced SIR recruitment by Rap1, we monitored TPE in the

absence of the Rap1-interacting factor 1 (Rif1), which competes

Figure 2. Sir4C is not sufficient for silencing at compromised HM loci. A) Quantitative mating assays were performed as in Figure 1C with
strains additionally carrying full deletions of YKU70 or SIR1 (GA6069, GA6070, GA6071, GA6062, GA6063, GA6064). Mating was normalized to wild-type
cells and at least three independent experiments were quantified; data represent mean value 6 s.e.m. # indicates values below 1023, n.d.
undetermined values. B, C, D) Testing silencing of compromised HMR: full sir4 deletion or endogenous sir4N were complemented with SIR4, SIR4C or a
SIR4N-C fusion in strains carrying a TRP1 reporter at HMR. The HMR-E silencer carried a deletion of either the B (Abf1 binding; GA485, GA6888, GA6899)
or A (Orc1-Sir1 binding; GA486, GA6890, GA6891) site. Dilution series for repression were performed as in Figure 1D.
doi:10.1371/journal.pgen.1002727.g002
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for Sir3 and Sir4 recruitment by the Rap1 C-terminus [60].

Whereas deletion of RIF1 increased telomere length and SIR

recruitment, leading to enhanced silencing [18,41], it did not

increase Sir4C- or Sir4N–C-mediated repression at Tel7L or

Tel5R::ADE2 (Figure S2D, S2E; compare to Figure 3A). Taken

together, these data indicate that Sir4C is insufficient for TPE, and

that Sir4N can contribute weakly to improve repression at native

telomeric genes and reporters, yet only full-length Sir4 supports

robust TPE.

Sir4C can form a stable and active SIR complex
Because Sir4C can silence HM loci, we asked whether Sir4C

forms a stable complex with Sir2 and Sir3. To test this, we co-

expressed Sir4C with Sir2 and Sir3 in baculovirus-infected insect

cells. Using conditions identical to those used to purify the full-

length Sir2–Sir3–Sir4 complex, we were able to purify a SIR

complex containing Sir4C (Figure 4A, 4C; [13,52]). Upon glycerol

density gradient sedimentation the complex migrated in two

distinct complexes: one containing Sir2, Sir3 and Sir4C and the

other containing only Sir2 and Sir4C, exactly like the complex

with full-length Sir4 (Figure 4C, 4D; [13]). We conclude that

Sir4C is sufficient to form a complex similar to the wild-type SIR

complex, when expressed in insect cells.

To confirm that the Sir4 N-terminus is dispensable for the

deacetylation activity of the SIR complex, we incubated recom-

binant protein complexes of either full-length Sir2–Sir3–Sir4 or

truncated Sir2–Sir3–Sir4C with histone octamers that were fully

acetylated on histone H4K16. We assayed H4K16ac deacetylation

over time by Western blotting [28], and found that the two

complexes had similar deacetylation activities (Figure 4B). We

conclude that Sir4C forms a stable and active SIR complex,

consistent with its ability to confer HM repression.

Sir4N promotes high-affinity binding to chromatin and
linker DNA protection

To explain the contributions of the Sir4 N-terminus for

repression in biochemical terms, we examined the contribution

of Sir4N to SIR complex loading onto nucleosomal arrays in vitro.

In a previous study, we showed that recombinant Sir4N has

considerable non-specific affinity for DNA [52]. To test whether

this contributes to the affinity of the SIR complex for chromatin,

we first compared the DNA-binding properties of the Sir2–Sir4

and Sir2–Sir4C complexes. Increasing amounts of each complex

were titrated into a constant amount of a high-affinity histone

octamer-binding sequence (Widom 601; [61]). By using the binary

Sir2–Sir4 complex rather than ternary complexes with Sir3, we

could avoid contributions of Sir3 to DNA binding [26]. SIR

complex association with DNA leads to the appearance of higher

molecular weight species after native gel electrophoresis, and the

disappearance of unbound DNA. We quantified the disappear-

ance of the unbound DNA as a function of Sir2–Sir4 complex

concentration. This showed that the truncated Sir2–Sir4C

Figure 3. Sir4C is not sufficient for silencing at telomeres. A) Telomeric silencing was monitored by a Tel7L::URA3 reporter gene (GA503,
GA5809, GA5822) expressing the indicated proteins from pRS, including the SIR4N-C fusion. Growth on plates containing 5 nM rapamycin (rapa) was
also monitored. B) Relative mRNA levels of three different subtelomeric genes and HML-ALPHA1 were measured using QPCR. Bars represent averages
of biological triplicates, data represent mean value 6 s.e.m. C) Scheme of the HM loci and telomeres analyzed, indicating additional recruiting
elements and distances of promoters from nucleating elements.
doi:10.1371/journal.pgen.1002727.g003
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complex has about four–fold lower affinity than the full-length

Sir2–Sir4 complex for naked DNA (Figure 5A).

We next examined the contribution of the Sir4 N-terminus to

nucleosome binding, by titrating the complexes onto hexameric

nucleosomal arrays assembled in vitro, as previously described [52].

Again, by quantifying the disappearance of unbound nucleosomes,

we found that the Sir2–Sir4C complex has roughly two-fold lower

affinity for chromatin than the full-length Sir2–Sir4 complex

(Figure 5B). This effect was even more pronounced when we

compared the binding of holo-SIR complex with that of the Sir2–

Sir3–Sir4C complex. The complex carrying the truncated Sir4C

had a much lower affinity for nucleosomal arrays than that

containing full-length Sir4 (Figure 5C), possibly because Sir3

sterically masks part of Sir4C’s chromatin-binding surface [27,33].

Since the SIR complex is known to protect nucleosomal linker

DNA from micrococcal nuclease (MNase) attack [28,52], we

examined the contribution of Sir4N to linker DNA protection.

Importantly, we used two- to four-fold more of the truncated Sir2–

Sir4C complex than of wild-type Sir2–Sir4 complex, to ensure that

equal amounts of chromatin-SIR complex were formed

(Figure 5B). The Sir2–Sir4C complex showed less linker DNA

protection than the full-length Sir2–Sir4 complex (Figure 5D),

despite the fact that equal fractions of nucleosomes were bound in

each reaction. These data suggest that the affinity of Sir4N for

DNA promotes a tighter binding of SIR complexes to chromatin,

thereby enhancing linker DNA protection. This attributes a

function to the Sir4 N-terminus beyond recruitment by Sir1 or

Yku80.

Truncated Sir4 mediates formation of Sir3 foci
independently of silencing

Silencing at telomeres is sensitive to the anchorage and

clustering of the telomeres at the nuclear envelope [44,45,50].

Since Sir4C can restore silencing at HM loci but not at telomeres,

we wondered whether Sir3 focus formation, as an indication of

telomere clustering, might depend on Sir4N. To test this

hypothesis, we expressed a Sir3–EGFP fusion protein in yeast

cells in which the endogenous SIR4 gene was either deleted (sir4D)

or truncated (sir4N), and either SIR4 or SIR4C was expressed from

a CEN-ARS plasmid. Similar to a strain without tagged Sir3

(Figure 3A, S2B), both Sir4C and full-length Sir4 restored mating-

type repression in the SIR3–EGFP background, but only full-length

Sir4 was able to restore TPE fully (Figure S3). Although Sir4C-

expressing cells are competent to mate, they grow more slowly

(Figure 2C) and occasionally had larger and obviously distorted

nuclei compared to wild-type cells. We imaged Sir3-EGFP in

living cells and found that Sir3–EGFP foci formed when either

Sir4 or the truncated Sir4C protein was expressed, as determined

by counting the number of cells containing at least three Sir3–

EGFP foci (Figure 6A, 6C). In about 20% of the Sir4C-expressing

cells, we observed one to three very intense Sir3 foci in addition to

the small telomere clusters, whether or not the endogenous SIR4

gene was present (Figure 6B). We conclude that the N-terminus of

Sir4 is not necessary for the formation of Sir protein clusters, and

thus that large Sir3–EGFP foci can form in the absence of TPE.

The dissociation of Sir3 foci from TPE confirms a recent report

showing that non-perinuclear Sir3 clusters can form in cells unable

to support SIR-mediated repression [62].

The Sir4 N-terminal domain is its major site of
phosphorylation in G2/M-phase cells

SIR complex binding at telomeres appears to be modulated in

response to the physiological state of the cells. For instance, Sir

proteins are released from telomeres both in mitotic cells [63,64],

and in response to genotoxic stress [65,66]. Indeed, activation of the

DNA damage checkpoint affects TPE, but not HM repression,

much like the deletion of Sir4N. Moreover, subtelomeric domains

contain a number of genes that are regulated in response to nutrient

stress [67,68] by a kinase cascade that targets, among other things,

Sir3 [59]. Finally Sir4N harbors many potential phosphoacceptor

sites, and whole phosphoproteome studies suggested that Sir4 is

modified in a manner that fluctuates with the activity of the cell-

cycle regulated cyclin-dependent kinase (CDK; [69,70]). Thus it

was proposed that the N-terminal half of Sir4 might act as a

phosphorylation-dependent regulatory domain [34].

To identify in vivo phosphoacceptor sites in Sir4, we first

expressed a functional, epitope-tagged Sir4 from its endogenous

locus. The Myc-tagged Sir4 protein was immunoprecipitated

either from cycling cells or from cells that were arrested in G2/M

phase by repressing CDC20, which encodes an essential anaphase-

initiating factor (Figure S4A, S4B). We then used mass spectros-

copy to identify the phosphorylated peptides. As predicted by Zill

and colleagues [34], most of the phosphorylated amino acid

residues were in the N-terminal half of the protein (Figure 7A and

7B, Figure S4C, Table 2). Moreover, ten of the twelve

phosphorylated sites we identified contained the minimal consen-

sus sequence for CDK, [S/T*]-P (in bold face in Figure 7A,

Table 2), which can also be phosphorylated by the mitogen-

activated protein kinase (MAPK). These sites were among those

previously predicted to be targets for CDK and MAPK [71,72].

Five of these [S/T*]-P sites showed at least 1.5-fold higher levels

of phosphorylation in G2/M as compared to cycling cells

(Figure 7B). One of these was in the Sir4C domain (S1134),

which, interestingly, is near a mapped SUMO-acceptor residue

(K1128) within the Esc1-binding PAD domain [73]. However,

mutation of this C-terminal phosphoacceptor site or the neigh-

boring SUMO acceptor lysine yielded no detectable silencing- or

anchoring-related phenotypes (data not shown). We therefore

focused on the phosphoacceptor sites in the N-terminus of the

protein. Within this domain, serine 63 (S63) was the site we

detected most frequently over several experiments, while serine 84

(S84) showed a strict G2/M specificity.

To confirm the presence of CDK target sites within Sir4N, we

exposed a recombinant Sir4N–GST fusion protein to a range of

purified kinases in vitro. The recombinant protein was modified by

CDK and protein kinase C, but not by yeast casein kinase II or the

human MAP kinase, ERK (Figure S5A, S5B). To examine

whether the sites modified by CDK in vitro corresponded to the

sites phosphorylated in vivo, we mutated CDK consensus sites

within the Sir4N domain (Figure 7A). We substituted consensus-

Figure 4. Sir4C can form a stable and active SIR complex in a recombinant system. A) SIR complexes as indicated were purified form co-
infected insect cells. 1 mg of each complex was run on a SDS-PAGE and visualized by Coomassie staining. B) Purified Sir2–Sir3–Sir4 and Sir2–Sir3–Sir4C
complex were incubated with histone octamers acetylated at H4K16 with or without the essential cofactor NAD. The deacetylation reaction was
stopped after various time points by the addition of sample buffer and monitored by immuno blotting for H4K16ac and H3, for equal loading. C, D)
Sir2–Sir3–Sir4 or Sir2–Sir3–Sir4C complexes were analyzed by density gradient sedimentation. Fractions were run on 4–12% NuPAGEs Novex Bis-Tris
Gels and stained with Sypro Ruby dye. Intensities of Sir2, Sir3 and Sir4 full length proteins were quantified (QuantityONE) and plotted in line graphs.
The asterisk in D) indicates a Sir4 degradation band that runs very closely to Sir3.
doi:10.1371/journal.pgen.1002727.g004
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site threonines 7 and 13 by alanines (A7 and A13), and serines 63

and 84 by glycine residues (Sir4NGG), alone and in combination

(Figure 7C). The mutant Sir4N domains were purified and used as

substrates for phosphorylation by CDK in the presence of c32P-

ATP. After trypsin digestion, the resulting phosphopeptides were

resolved by high-resolution 1D gel electrophoresis (Figure 7C).

The identities of the cleavage products were determined both by

co-migration with synthesized, digested peptides and by the

Figure 5. Sir4C has reduced affinity for DNA and chromatin and protects linker DNA less from MNase attack. A) Increasing amounts of
Sir2–Sir4 or Sir2–Sir4C complexes were titrated into a fixed amount of 167 bp 601-Widom Cy5-labeled DNA. Samples were separated by native
agarose gel electrophoresis and visualized by Cy5 fluorescence. Binding in three independent experiments was quantified by measuring the
disappearance of the unbound DNA and normalized to input; data represent mean value 6 s.e.m. B) Sir2–Sir4 and Sir2–Sir4C complexes were titrated
into constant amounts of 6 mer arrays of unmodified nucleosomes. Samples were analyzed as (A); chromatin was visualized by SybrSafe staining. C)
Sir2–Sir3–Sir4 and Sir2–Sir3–Sir4C complexes were titrated into constant amounts of 6 mer arrays of unmodified nucleosomes as in (B), with only one
experiment analyzed. D) Indicated concentrations of Sir2–Sir4 or Sir2–Sir4C were bound to chromatin as in (B) and incubated with increasing
amounts of MNase for 10 min on ice prior to deproteinization. DNA was analyzed by agarose gel electrophoresis and SybrSafe staining. The amount
of full length 6 mer DNA was quantified to monitor degree of digestion. Data from at least three experiments are represented as mean value 6 s.e.m.
doi:10.1371/journal.pgen.1002727.g005
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absence of signal in the mutants in which serine or threonine had

been replaced by non-phosphoaccepting amino acids (Figure 7C

and data not shown). Unlike the wild-type Sir4N protein, peptides

carrying glycine substitutes at S63 and S84 lost almost all CDK-

mediated phosphorylation in vitro (Figure 7C, Figure S5B). In

contrast, alanine substitutions at T7 or T13 had only minor effects,

alone or in combination. Given that S63 and S84 were

phosphorylated by CDK both in vitro and in the endogenous

protein recovered from mitotic cells, we propose that these two

Sir4N residues are the major, physiological targets for CDK.

Mutation of phosphoacceptor sites does not alter Sir4N
interaction with Yku80, Sir1, Sif2, or DNA

To test the functional significance of Sir4N phosphorylation at

S63 and S84 we analyzed the interactions of the non-phosphor-

ylatable Sir4N mutant (Sir4NGG) and the mutant carrying a

mutation that mimics the phosphoserine residues (Sir4NDD) with

Sir1, Sif2 and Yku80. In yeast two-hybrid analyses, the

interactions between Sir4NGG or Sir4NDD and Yku80, Sif2 or

Sir1 were identical to the interactions between wild-type Sir4N

and these binding partners (Figure 7D). Thus, at least in this assay,

substitution of S63 and S84 by either G or D does not perturb the

binding of known ligands to Sir4N.

We next tested mutant and wild-type Sir4N fragments for their

ability to bind DNA and protect linker DNA from MNase

digestion. Intriguingly, the Sir4NGG mutant showed a higher

affinity for DNA than the wild-type protein or the Sir4NDD

mutant, suggesting that Sir4N phosphorylation might weaken its

interaction with DNA (Figure 7E).The incubation of Sir4N with

CDK in vitro prior to DNA binding, increased the affinities of both

wild-type Sir4N and the non-phosphorylatable Sir4NGG mutant

for DNA, due to nonspecific effects of the kinase (Figure S5C).

Indeed, by performing MNase digestion of nucleosomes bound by

Sir4NGG, Sir4NDD, or the wild-type protein, we found equal

protection of linker DNAs in all cases (Figure 7F). We conclude

that point mutations at these two major CDK phosphoacceptor

sites in Sir4N do not substantially alter the affinity of the domain

for either chromatin or DNA.

Mutation of Sir4N phosphorylation sites affects the
stability of gene repression in vivo

Despite the absence of in vitro phenotypes for Sir4N bearing

mutated S63 and S84 residues, we checked the effects of these two

phosphoacceptor site mutations on silencing in vivo. To test this, we

introduced the double mutations S63G–S84G (sir4GG) or S63D–

S84D (sir4DD) into the endogenous SIR4 gene in a strain carrying

both Tel5R::ADE2 and Tel7L::URA3 telomeric reporter genes. In

the course of these experiments we serendipitously created an

additional mutation at the Sir4 N-terminus, namely a proline to

alanine substitution at residue 2 (sir4P2A). This substitution does not

Figure 6. Sir4C supports Sir3 focus formation in vivo. A, B) Sir3-EGFP foci were monitored in logarithmically growing cultures using live
microscopy. Sir3-EGFP was tagged at its endogenous locus and the strains carried the indicated forms of SIR4 (GA3128, GA6287, GA6288). Full-length
Sir4 or Sir4C were added back on plasmids. Images were quantified by counting cells having .3 Sir3 foci at a low signal threshold or .1 Sir3 focus at
a high threshold of equally treated images (n.240 cells/sample; .2 independent experiments; data represent mean value 6 s.e.m). C) Single focal
planes of deconvolved images of Sir3-EGFP as above; size bar 1 mm.
doi:10.1371/journal.pgen.1002727.g006
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Figure 7. Sir4N is the major site of phosphorylation. A) Scheme of Sir4 as in Figure 1A, indicating identified phosphoacceptor sites of full-
length Sir4. Serine 63 and 84 mutated in subsequent experiments are indicated in red. Sites having the [S/T*]-P consensus are in bold. B) Relative
quantification of the enrichment of Sir4 phosphopeptides in G2/M over cycling cells by LC-MS of a trypsin and of a combined AspN/chymotrypsin
digest of a Sir4-IP experiment. For each digest the extracted ion chromatograms were integrated and the ratios of peptides detected in G2/M versus
log growing cells were calculated for five phosphorylated as well as five non-phosphorylated Sir4 peptides. The ratio average of the five non-
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prevent cleavage of the initiator methionine or acetylation of the

alanine at position 2 in contrast to the proline, and protein half life

is predicted to be the same for either variant [74]. Indeed, we

scored no significant effects on the half-life of Sir4 due to any of

the mutations described above or below (data not shown).

We first tested the effects of the background P2A mutation alone

on ADE2 silencing at Tel5R. We found that most sir4P2A colonies

were darker red than wild-type colonies (Figure 8A), which

indicates a more stable repression of ADE2. On the other hand,

some colonies were completely white, indicating a low frequency

of stable Tel5R::ADE2 reporter derepression (Figure 8C–8E). This

suggested to us that the P2A mutation stabilizes either ‘‘off’’ or

‘‘on’’ epigenetic states at Tel5R. When the P2A mutation was

combined with the non-phosphorylatable sir4P2AGG mutation or

the phospho-mimicking mutation (sir4P2ADD), we scored the same

dark red color, but also noted that white colonies appeared at

higher frequency (Figure 8A, 8B). To quantify this phenomenon,

we cultured single white or dark red colonies from each strain in

liquid culture and plated them out after 24 h and 48 h to score the

status of the ADE2 reporter by red vs white colony color. Whereas

less than 1% of the sir4P2A colonies switched from red (ADE2

repressed) to white (ADE2 derepressed), we found that 6–10% of

the sir4P2AGG or sir4P2ADD colonies switched color, indicating that

these mutations render the repressed state less stable (Figure 8C).

Conversely, we found that 0.4–0.6% of sir4P2A colonies switched

from a derepressed to a repressed state (white to red), while the

sir4P2AGG or sir4P2ADD strains remained completely derepressed,

with no red colonies detected after 24 h of culturing of a white

colony (Figure 8D). This argues that mutation of S63 and S84

generally destabilizes silencing or impairs re-establishment of a

repressed state. The effects are particularly noticeable in combi-

nation with the sir4P2A mutation, which alone, for unknown

reasons, stabilizes either state.

To test whether the effect of these mutations at Tel5R:ADE2

held true for another telomere, we spotted overnight cultures of

single colonies onto uracil-deficient plates, to score for expression

of the Tel7L::URA3 reporter gene (Figure 8E). We observed loss of

URA3 gene silencing in the sir4P2AGG and sir4P2ADD mutants.

Moreover, the colonies growing on uracil-deficient plates were all

white (ADE2 derepressed), indicating that Tel7L and Tel5R

reporter genes were derepressed simultaneously (Figure 8E). The

loss of Tel7L::URA3 repression was far more pronounced for the

white colonies of sir4P2AGG and sir4P2ADD strains than for the sir4P2A

mutation alone, arguing that alteration of the phosphorylation sites

does indeed enhance derepression.

We next investigated whether the Sir4 phospho-site mutants

caused general disruption of telomeric silencing when this is scored

by growth on rapamycin (Figure 3A). Indeed, the white

(derepressed) colonies of the sir4P2ADD and sir4P2AGG strains showed

more resistance to rapamycin than the red (repressed) colonies,

and were almost as resistant as the sir4D strain (Figure 8E).

Quantification showed that this effect was far more pronounced in

the sir4P2ADD and sir4P2AGG strains, than in the sir4P2A strain (15%

for sir4P2A, 49% for sir4P2AGG and 69% for sir4P2ADD). As in the

switching assay, the phospho-mimicking mutation sir4P2ADD

produced the strongest derepressed state and strongest rapamycin

resistance (Figure 8E).

We generalized this observation by scoring mRNA levels at

native subtelomeric genes. This was done both by mRNA analysis

for genes at two natural telomeres, Tel6R and Tel9R (Figure 3C)

and by whole genome tiling arrays, that compared gene expression

in wild-type SIR4 cells with either red or white colonies of the

sir4P2ADD mutant. The data in Figure 8F confirmed derepression at

both natural telomeric genes and at Tel7L::URA3 in white

sir4P2ADD colonies, although not to the degree detected in the

sir4D stain (Figure 8F). We also observed derepression of HML in

the white sir4P2ADD cells. On the other hand, when we examine

expression in the red sir4P2ADD colonies, we find that subtelomeric

genes are as stably repressed in the red sir4P2ADD mutant cells as

they are in a SIR4 wild-type strain (Figure 8F). The microarray

data confirmed this trend for subtelomeric genes (Figure 8G). By

overlaying the transcriptional effects on all genes as a function of

their distance from the telomere (red line is lowess smoothed over

all genes), we score an increase in expression from genes within the

first 5 kb from the telomere in both the sir4D and the white

sir4P2ADD strains (Figure 8G). We also observed a generally

phosphorylated peptides of each digest was expected to be 1 and the corresponding correction factors were used for normalization of the
phosphorylated peptides. For the five non-phosphorylated peptides the ratio average is displayed with error bars as standard deviation. C) In vitro
phosphorylation followed by partial trypsin digestion of recombinant Sir4N and indicated Sir4N phosphosite mutants. The tryptic peptides were
separated by high resolution SDS-PAGE and analyzed by radiography. Peptide sequences to the right indicate the migration pattern of trypsin-
digested in vitro phosphorylated standard peptides containing the indicated phospho-serine or -threonine residues D) Interaction of Sir4N with
known interaction partners was analyzed by yeast two-hybrid analysis. Sir4N and Sir4NGG or Sir4NDD mutants were used as prey, for Yku80, Sir1 and
Sif2 bait constructs that induce expression of the b-galactosidase gene upon interaction. At least three independent experiments were averaged for
each value; data represent mean value 6 s.e.m. E) Sir4N fragment indicated in Figure 7A and the respective mutants were expressed and purified
from E. coli. DNA binding was performed and analyzed as in Figure 5A; data represent mean value 6 s.e.m of three independent experiments. F) Sir4N
fragments were bound to 6 mer arrays of nucleosomes and challenged with increasing amounts of MNase as in Figure 5D. Quantification of two
independent experiments was used, data represent mean values.
doi:10.1371/journal.pgen.1002727.g007

Table 2. Summary of Sir4 phosphopeptides identified.

peptide p-site Log G2/M SwissProt

K KPVpTPNDKIPEREEK S 22 x x

Y SRPSTAIHTpSPHQPS D 63 x x (62)

S DVKPTSHKQLQQPKp(SS)PL K 83/84 x

R SKpTSAGRIESNNPSHDASR S 115 x

L TSKKIVPpSPKKVAI D 342 x x yes

M EILKpSPHLSKSPA D 389 x x

K SPHLSKpSPADRPQGR R 395 x

I DSRNNTLNVpTPSKRPQLG E 514 x x

S DNFPVp(SLS)QPSKKSF A 709/711 x x yes/yes

K PSQIPTVpSPLGFEETK L 932 x

K Lp(STT)PTKSNRRVSH S 942/943/944 x

K NVKPSpSPPDVK S 1134 x x yes

Summary of Sir4 phosphopeptides identified in either cycling (Log) or G2/M
arrested cells. Indicated are the identified peptides. The residues left and right
indicate the cleavage sites and in bold is the phosphorylated residue within the
peptide; the amino acid phosphorylated; the status of the cells in which it was
detected; the presence of existing information in the SwissProt database. If the
phosphorylation site is not uniquely identified, the potential site is in
parenthesis. S/TP motifs are considered minimal consenses for either CDK or
MAP kinase modification.
doi:10.1371/journal.pgen.1002727.t002
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Figure 8. Sir4N phosphoacceptor site mutants show increased accumulation of active states and overall derepression of TPE. A, B)
Single colony streaks for ADE2 color assay monitor silencing of the indicated mutant strains (GA6018, GA5887, GA5888, GA5822, GA503). C,D)
Quantification of cells swapping from a silent red to a de-repressed white state or vice versa. Single colonies were grown for the indicated time and
dilutions plated on YPAD to monitor colony color. E) Single white or red colonies as in Figure 8C/8D were grown overnight and then spotted in
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stronger repressed state in the sir4P2ADD red colony for the genes

that lie closest to telomeres, as expected. Thus the effects of the

mutations on the ADE2 reporter can be confirmed and extended

to native subtelomeric genes.

In summary, thanks to the stabilizing effect of the sir4P2A

background, we are able to demonstrate a defect in the sir4P2ADD

and the sir4P2AGG strains in silencing. The derepressed state

suggested by white colony color coincided with general derepres-

sion of TPE and with resistance to rapamycin, as reported for the

sir4D strain. We note that the phenotypes were somewhat stronger

for the phospho-mimicking sir4P2ADD mutant than for sir4P2AGG.

Taken together, these results indicate that the Sir4 N-terminus

helps modulate stable gene repression at telomeres by being

phosphorylated on the target sites we have identified.

Discussion

SIR-mediated transcriptional repression in budding yeast has

been studied genetically and biochemically for over 20 years, yet

we still do not fully understand the functions of its core

components nor how it is regulated either during the cell cycle

or in response to stress. In this study we addressed the molecular

role and regulation of Sir4, the largest and least conserved Sir

protein. On the basis of our new findings and a large body of

earlier work, we can assign four roles to different domains of Sir4

and describe their functions in SIR-mediated repression. First, as

described previously, the C-terminal half of the Sir4 protein has a

scaffolding function that is essential for assembling Sir2 and Sir3

into the SIR complex and delivering it to chromatin (by binding to

Rap1 and Yku). Second, the N-terminal 270 residues of Sir4 have

a recruitment function by binding Sir1 and Yku80. Third, the

Sir4N contributes to the tight association of the SIR complex with

DNA in vitro and enhances nucleosomal linker protection. This

domain is essential in vivo for repression of HM loci under

suboptimal conditions (i.e. when the silencers in HMR are

compromised or when Yku70 is absent) and contributes signifi-

cantly to TPE. Finally, we find that both the extreme N-terminus

and the adjacent central domain of Sir4 are heavily phosphory-

lated in vivo and that the mutation of two phosphoacceptor sites in

the N-terminus affects the stability of subtelomeric repression.

Given that Sir4 residues S63 and S84 are phosphorylated in

mitotic cells, we speculate that the phosphorylation of Sir4N

regulates the stability of TPE through the cell cycle.

The C-terminus of Sir4 is sufficient to establish a silent
chromatin structure

Marshall and colleagues proposed in 1987 [51] that both the N-

and C-terminal domains of Sir4 were required for silencing of

HML. By using a slightly shorter and significantly more stable C-

terminal domain of Sir4 than that used by Marshall and colleagues

(residues 747–1358), we show that the Sir4 N-terminus is

dispensable for repression of intact HML and HMR loci, although

not for the repression of subtelomeric reporter genes. The ability

of Sir4C to silence HM reflects, in part, the strong redundancy in

Sir factor recruitment pathways at HM loci, i.e. several silencer

factors redundantly recruit Sir3 and Sir4 [20].

Consistent with our finding that Sir4C is sufficient to silence

intact HMR in the presence of Sir2 and Sir3, we find that

recombinant complexes containing Sir2, Sir3, and Sir4C are

stable upon isolation, retain full histone H4K16 deacetylation

activity and bind nucleosomal arrays in vitro. H4K16 deacetylation

by Sir2 has been proposed to provoke a conformational change in

the SIR complex that increases its binding to chromatin

[28,52,75]. We do not know whether in the SIR complex the N-

terminal domain of Sir4 contributes to this change in conforma-

tion, although we note that Sir4C-containing complexes retain

deacetylation activity.

We explain the inability of a longer Sir4C fragment to repress

(as described in Marshall et al., 1987) by its instability (Figure S1B).

Indeed, this is consistent with an earlier study of the san1-1 mutant,

which partially restores mating in a strain expressing only a Sir4

C-terminal domain [76]. San1 is a ubiquitin ligase that targets

misfolded proteins for degradation by the proteasome, and one of

its targets is Sir4 [77]. Our work and this study suggest that a

sufficiently stable Sir4C fragment provides all the essential

interactions necessary for formation of silent chromatin at HM

loci – most crucially a tight association with Sir2 and Sir3 to create

an active, heterotrimeric complex that can interact stably with

chromatin [13,52]. It is not, however, sufficient for TPE.

The Sir4 N-terminus enhances Sir4 binding to HM loci via
protein- and DNA-interactions

Although the Sir4 C-terminus is sufficient for HM repression

under certain conditions, we also found conditions that render the

N-terminus essential for efficient HM silencing, namely when one

of the recruiting elements was deleted at the HMR-E silencer (DA

Orc1-Sir1 site or DB Abf1 site), or in the absence of YKU70. This

weakens the recruitment of Sir3 or Sir4 to the HM silencers. The

requirement for Sir4N under these conditions is consistent with its

ability to bind Sir1 and Yku80. Sir1 recruits Sir4 to HM silencers

by direct interaction with Orc1 [21]. The Yku70/80 complex can

stabilizes silent chromatin by two means, first by recruiting the

HM loci to Sir-clusters at the periphery [46,49]and second by

helping form a promoter-silencer interaction at HM loci through a

looping mechanism [78–80]. Nevertheless, Yku70/80 is only

essential for mating in the absence of Sir1 and vice versa [56,57].

Consistent with this, we observe that Sir4N enhances mating

efficiency in the absence of Yku70.

These two interactions, however, are probably not the only

functions of the Sir4 N-terminus in HM silencing. First, there are

two other sites of contact between Sir4 and the Yku70/80 complex

[39,42], and second, expression of a Sir4N-C fusion protein

represses an HMR locus that lacks one of its binding sites for ORC

(HMR-EDA; Figure 2D). This indicates a function for the Sir4 N-

terminus that is independent of its interaction with Sir1. We

propose that the additional function is its strong non-specific

affinity for DNA, which contributes to a tighter interaction of the

dilution series onto YPAD plates for ADE2 color development, or on plates lacking uracil. To test rapamycin sensitivity, cells were additionally spotted
onto SC plates containing 2.5 nM rapamycin. Colony growth was quantified as % of survivors growing on plates lacking uracil or containing 2.5 nM
rapamycin. Results are plotted in the bar graph (two independent isogenic strains, each scored in 4–8 experiments; combined data are represented as
mean value 6 s.e.m). We note that the sir4P2A effect is stronger at Tel5R than at Tel7L, possible because the silencing of reporters at Tel5R is much
weaker to begin with [99,100]. F) Relative quantification of mRNA of HML-APLHA1 and the three indicated subtelomeric genes (see Figure 3C) in white
or red colonies recovered from SIR4, sir4D and sir4P2ADD red and white colonies (GA503, GA5822, GA5887). Data from three biological replicates are
represented as mean values 6 sem G) Microarray analysis of SIR4, sir4D and sir4P2ADD red and white colonies (GA503, GA5822, GA5887). Plotted are
the zero centered fold changes of log2 expression values of genes as a function of their distance from the telomere in relation to data for an isogenic
SIR4+ strain. Black spots represent single genes, the red line is lowess smoothed over all genes.
doi:10.1371/journal.pgen.1002727.g008

Regulating Silencing by the Sir4 N-Terminus

PLoS Genetics | www.plosgenetics.org 14 May 2012 | Volume 8 | Issue 5 | e1002727



SIR complex to chromatin and to enhanced linker DNA

protection in vitro.

Full-length Sir4 is necessary for full subtelomeric
repression

At telomeres, the Sir4 N-terminus is required for TPE. Moreover,

while the expression of a Sir4N-C fusion slightly reduces mRNA

levels compared to Sir4C, it could not suppress reporter genes when

their promoters were induced. Since Sir1 is not required for

subtelomeric repression, these effects are independent of Sir1 [15].

Rather, we suggest that the DNA-binding affinity of Sir4N increases

binding of the SIR complex to telomeres to enhance the stability of

repression. Full TPE, however, appears to require not only the first

270 amino acids of Sir4, but also the unstructured region between

270 and 744. Thus we suggest that another, yet unidentified

function may be attributed to this domain.

Besides promoting tight association of the SIR holocomplex

with DNA, the N-terminus of Sir4 may also regulate the strength

or character of the Sir3–Sir4 interaction. We find that expression

of Sir4C enhances the formation Sir3–EGFP foci even when there

is no TPE. Similarly, Sir3-EGFP foci in the absence of TPE were

observed in a strain overexpressing a non-acetylatable form of Sir3

[62], indicating that Sir protein clustering does not always lead to

gene repression. It is possible that the Sir4C protein has a stronger

affinity for Sir3 than does full-length Sir4. This is consistent with

an earlier hypothesis that the Sir4 N-terminus interferes the

binding of Sir3 to Sir4 [43,81]. If true, the expression of Sir4C

alone may lead to the sequestration of Sir3 into foci that

antagonize repression. Consistent with this, we note that telomeres

are highly sensitive to changes in Sir protein levels [31], and that

Sir4C expression is somewhat toxic to cells, while that of the

Sir4N–C fusion is not (Figure S2E and data not shown).

The N-terminus is the major site of Sir4 phosphorylation
and fine-tunes subtelomeric stress-response genes

In this study we characterize Sir4 as a phosphoprotein and map

key phosphoacceptor sites in the N-terminal domain of the

protein. We show that two sites that are phosphorylated by CDK

in vitro are also phosphorylated in mitotic cells in vivo. Zill and

colleagues [34] speculated that the N-terminus of Sir4 may be

specialized for fine-tuning or regulating silencing in response to

environmental factors. Indeed, we find that the N-terminus of Sir4

is its major site of phosphorylation in vivo.

What functions of Sir4 might be affected by its phosphorylation?

As Sir4N is dispensable for HM silencing, but is essential for TPE,

we reasoned that the state of Sir4 phosphorylation might affect the

repression of subtelomeric genes, many of which are activated only

under conditions of nutrient stress [59]. Phosphorylation of the

Sir4N terminus by CDK may also destabilize silent chromatin in

mitosis. Consistent with this, previous work has shown that SIR

complexes are partially released from telomeres in mitotic yeast

nuclei [63,64], and yeast heterochromatin is most accessible to

transcription factors and gene activation during G2/M phase [82].

Moreover, passage through mitosis, which is accompanied by

CDK-dependent protein phosphorylation and dephosphorylation,

is important for the establishment of silencing [83–85]. Although it

is not clear why, we note that the partial release of factors from

chromatin during mitosis is a common feature of eukaryotes.

Heterochromatin protein 1 (HP1; [86]) and the Polycomb

complex (PcG; [87]) are both partially released during mitosis in

Drosophila. The Polycomb protein EZH2 is a direct target of CDK

[88,89], and HP1 release appears to be due to phosphorylation of

histone H3 on Ser10 by Aurora B kinase [90,91].

In yeast, we show that the substitution of the Sir4 phosphoac-

ceptor sites S63 and S84 by acidic amino acids, or by non-

phospho-accepting glycines, had only minor effects on the TPE

(Figure S6). However, by combining these mutations with a

fortuitous mutation of residue 2 (proline to alanine or P2A), we

could observe that they indeed tend to derepress TPE. The sir4P2A

mutation alone had a strong stabilizing effect on either silent or

open epigenetic states, in that ADE2 repression at Tel5R was seen

to be either enhanced or abolished. The phospho-acceptor site

mutants (sir4P2ADD or sir4P2AGG) has a tendency to derepress TPE

and thereafter to retain the derepressed state, which is readily

visible thanks to the stabilizing effect of sir4P2A. Indeed, re-

establishing a repressed state occurred less frequently in the

sir4P2ADD or sir4P2AGG mutant cells. Importantly, we then showed

by microarray analysis that this was accompanied by a general

derepression of subtelomeric genes, similar - albeit less pro-

nounced - to that observed in sir4D cells. Together our analysis

suggests that the modification of Sir4N S63 and S84 CDK target

sites either directly derepresses TPE or interferes in the re-

establishment of a repressed state. We suggest that the Sir4 N-

terminal domain regulates repression both during the cell cycle

and in response to environmental stress, which is most likely

mediated by a MAP kinase cascade. Given the abundance of

confirmed CDK phosphoacceptor sites in this domain, and

putative MAP kinase sites, this may be one of the main functions

of Sir4 N-terminus.

Materials and Methods

Plasmids, strains, and yeast methods
All strains and plasmids are described in Text S1. Standard

techniques were used for cloning, yeast strain generation and

growth. To obtain Sir4 expression similar to the endogenous

levels, the Sir4 locus (1 kb 59 of start and 250 bp 39) was cloned

into a CEN-ARS plasmid. Introduction of a NcoI site at the Sir4

start codon allowed subcloning of shorter Sir4 fragments and

introduced the P2A mutation. To introduce the Sir4 phosphosite

mutations into the genome, the respective plasmids were digested

with SalI and SacI, purified fragments were integrated into a

sir4::KanMX6 (GA5822) strain. Positive clones were selected for

growth on SC medium+0.1% 5-FOA and checked by sequencing

of the genomic locus. At least two independent transformants were

analyzed.

To check Sir4 expression levels, the CEN-ARS plasmids were

transformed into a protease-deleted strain (GA73) and cells were

grown to OD600,1 prior to lysis by bead-beating. Standard

techniques were used for SDS-PAGE and immunoblotting. Mcm2

(yN-19) antibody is from Santa Cruz, anti Myc antibody 9E10.

Sir2 and Sir4 antibody have been described previously [7,92].

Yeast two-hybrid analysis was carried out as described previously

but using the GA181 strain [93,94].

Silencing assays
For quantitative mating assays, plasmid transformed strains and

the tester strain were grown overnight in SC medium. 107 cells of

the mating-tester strain (GA858) were mixed in 1 ml YPAD

medium containing 26106 cells transformed with a given Sir4

plasmids and grown for 5 h at 30uC (see also [51]). Cells were then

grown 3 days at 30uC on SD medium to select for diploids and SC

medium – tryptophan/-methionine to normalize cell numbers.

Silencing of indicated reporter genes was performed as

described [95], after growth overnight in selective media. Ten-

fold dilution series starting at 107 cells/ml were performed in

triplicates on appropriate media. Silencing of the ADE2 reporter
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was scored after 3 days growth on YPAD 30uC and subsequent

maintenance at 4uC for 4 days.

Recombinant protein purification
Sir4C-expressing baculovirus was generated using the Baculo-

Gold linearized cDNA (BD Bioscience) and Cellfectin reagent

(Invitrogen) according to manufacturer’s instructions. SIR com-

plexes were co-expressed in insect sf21 cells and purified as

described previously [28,52]. Buffers contained 10 mM TEA pH8

when the proteins were purified for gradient sedimentation. For

gradient sedimentation, 200 ml Calmodulin-column eluate was

layered on a 4 ml 5–25% glycerol gradient (10 mM TEA pH8,

150 mM sodium chloride, 0.01% Tween-20) prepared using a

Gradient Master (BioComp) in Beckmann 11661 polyallomer

tubes. Gradients were centrifuged for 18 h at 4uC and 30’000 g

and fractionated into 100 ul aliquots Samples of 20 ml were

analyzed by SDS-PAGE and SyproRuby staining. Sir4N frag-

ments were expressed in E. coli and purified from inclusion bodies

using standard Ni-NTA techniques as described previously [52].

In vitro phosphorylation and phosphopeptide mapping
Recombinant Sir4N-GST was purified from E. coli using

standard procedures in PBS buffer. For phosphorylation assays,

the proteins were incubated with the indicated kinases for 1 h at

37uC (a kind gift of E. Nigg; CDK2 (NM_001798 Proqinase)) and

P32-c-ATP. To analyze phosphorylation, Sir4N was run on a

SDS-PAGE and proteins were detected by Coomassie staining and

radiography. For phospho-peptide detection, Sir4N-GST was first

digested by partial tryptic digest after in vitro phosphorylation.

Peptides were lyophilized and analyzed on alkaline peptide gels

and radiography according to the method of West and Bonner

[96]. Briefly, samples were resuspended in loading buffer

containing 0.125 M Tris-HCl pH 6.8 and 6 M urea. Peptides

were then separated on 0.5 mm thick gels containing, 40%

acrylamide, 0.037% bis-acrylamide, 0.75 M Tris-HCl pH 8.8.

Gels were run at 10 mA for approximately 4 h. Peptide size was

determined by co-migration with synthesized peptides that were

phosphorylated and loaded alongside.

Chromatin and DNA binding, MNase digestion
Chromatin and DNA binding as well as MNase digestions were

performed as described previously [28,52]. Briefly, 6 mer of

nucleosomes diluted to 2.561028 M were incubated with

increasing amounts of indicated proteins in 10 mM TEA pH7.4,

25 mM sodium chloride for 20 min on ice and analyzed on 0.7%

native agarose gels (0.26 TB) run at 4uC. DNA binding assays

were performed using a 167 bp 601-Widom sequence DNA

fragment Cy5-labeled by Klenow enzyme at an AvaI site. DNA

bindings were performed in 150 mM sodium chloride at a DNA

concentration of 2.561029 M, using the same conditions as for

chromatin binding. Linker DNA protection assays were performed

by adding 0.25–1 U MNase and 1 mM calcium chloride to

1 pmol chromatin that had been pre-incubated with indicated

amounts of Sir proteins. After 10 min on ice 5 mM EGTA was

added and samples were deproteinized by incubation with

proteinase K for 30 min at 30uC. Deacetylation, expression and

purification of homogeneously H4K16 reactions were carried out

as described previously [28]. 10 nM of purified Sir2–Sir3–Sir4

and Sir2–Sir3–Sir4C complex were incubated with 70 nM of

H4K16ac histone octamers with or without 150 mM of NAD. The

reaction was carried out at 30uC in 50 mM Tris pH 8, 50 mM

sodium chloride, 2.7 mM potassium chloride, 1 mM magnesium

chloride and 0.005% Tween-20. The reaction was stopped at the

indicated time points by addition of Laemmli sample buffer and

samples were analyzed by 4–12% SDS PAGE by immuno blotting

using H4K16ac antibody (Millipore 07-329) and H3 antibody

(Abcam ab1791).

Immunoprecipitation and phosphosite mapping
Cells (GA5691, GA5589, GA1275) were grown overnight to

OD600 = 0.6 in YPA-galactose media, then shifted to YPA-glucose

for 2 h at 30uC for mitotic arrest (G2/M cells). Cycling cells were

grown in the same carbon source, but did not contain the

GALp:CDC20 allele that leads to G2/M arrest in glucose. Cells

were harvested, washed once in ice-cold PBS and resuspended in

one pellet volume of lysis buffer without detergent (50 mM

HEPES pH7.5, 500 mM sodium acetate, 5 mM magnesium

acetate, 0.1 mM EDTA, 5% glycerol [32]). The resuspended cells

were snap frozen in liquid nitrogen and broken using a ball-mill

(363 min at 30 1/s; Retsch MM4000); the cell powder was stored

at 280uC. For immunoprecipitations, the cell powder was mixed

with an equal volume of lysis buffer containing protease and

phosphatase inhibitors and 1% Triton X-100. After thawing on ice

for 5 min, cell extract was cleared by centrifugation and 5 mg of

proteins were incubated at 4uC with 50 ml of Affi-prep protein A

beads (BioRad) crosslinked to 9E10 antibodies [97]. Beads were

washed with lysis buffer and stably bound proteins were eluted

twice with 1.56 bead volume of 2 M glycine pH2 which was

neutralized afterwards by Tris pH 8.0. For mass spectroscopy

analysis, the eluates were processed by reduction and alkylation of

the cysteines followed by sequential digestion with AspN and

chymotrypsin or with trypsin only. The peptides were separated by

nano-HPLC (Agilent 1100 nanoLC system, Agilent Technologies)

coupled to an LTQ Orbitrap Velos hybrid mass spectrometer

(Thermo Scientific) operated in positive mode using a top 5 DDA

method. Inclusion lists were partially added to the method to

search for expected peptides and to confirm already identified

phosphorylated Sir4 peptides. Phosphorylated peptides and

phosphosites were determined searching SwissProt data base

restricted to S. cerevisiae using Mascot 2.3 (Matrix Science).

Resulting sequences were inspected manually. Relative quantifi-

cation was performed by integration of LC–MS extracted ion

chromatograms. The peak areas of the corresponding phosphor-

ylated peptides were normalized to the average of the peak areas of

five non-phosphorylated Sir4 peptides. For prediction of CDK and

MAPK sites, GPS2.1 software was used [72].

Microscopy
C-terminally EGFP-tagged Sir3 (GA3128, GA6287, GA6288)

was monitored in live cells grown to mid-log phase in SC medium

and then embedded in an agarose pad as described [98]. For

quantification of Sir3-EGFP foci, all images were taken the same

day and treated with the same threshold to quantify foci versus

intense foci (above that threshold).

mRNA purification, QPCR, and microarray
Cells of indicated strains/colony color were grown to

OD600.0.6 and mRNA was purified using Qiagen mini RNeasy

Kit. Reverse Transcriptase (RT) reaction was performed using

ProtoScript AMV Kit (NEB#E6550). For QPCR, 0.5 ml of the

RT reaction was used in a total volume of 10 ml using the GoTaq

qPCR Master Mix (Promega, A6002), sybr green method and the

ONE STEP fast cycler (ABI). For primers see Text S1. Values

were normalized to ACT1 to account for samples differences and

then to Sir4.

For microarrays, 100 ng of total RNA were amplified with the

GeneChip WT Double-Stranded Target Assay (Affymetrix) and

hybridized to GeneChip S. cerevisiae Tiling 1.0R Arrays following
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the ‘‘GeneChip Whole Transcript (WT) Double-Stranded Target

Labeling Assay Manual’’ (Affymetrix) with a hybridization time of

16 h. The Affymetrix Fluidics protocol FS450_0001 was used for

washing. Scanning was performed with Affymetrix GCC Scan

Control v. 3.0.0.1214 on a GeneChip Scanner 3000 with

autoloader. Raw data CEL files were read into R (version

2.14.1) using the Bioconductor (version 2.9) package Affy and a

custom CDF package (available upon request). Probe sets were

summarized and probe set-level values normalized with the RMA

function. Gene coordinates for S. cerevisiae genes (EF3) were

downloaded from Biomart (central.biomart.org) and chromosome

length information was retrieved from the chromInfo table of the

UCSC genome browser (genom.ucsc.edu) for SacCer_Apr2011/

sacCer3. Fold changes were calculated using the lmFit and eBayes

functions as implemented in the limma package. Fold changes for

telomeric genes were centered around zero and plotted against the

distance to the closest chromosome end. Smoothing was

performed with the lowess (locally weighted scatterplot smoothing)

function and fold changes for each contrast were scaled and

centered using the function scale.

Supporting Information

Figure S1 An additional 16amino acids renders the Sir4C

fragment labile and unable to silence at HMR. A) Plasmids

expressing Sir4C (residues 747–1358), a slightly longer Sir4 C-

terminal fragment (residues 731–1358) or full length Sir4, under

the Sir4 promoter and terminator, were transformed into yeast

strains carrying a TRP1 reporter at HMR and the indicated

genotype at the SIR4 locus (GA5886, sir4D; GA6072, sir4N (1–

270)). Ten-fold dilution series were grown on plates selective for

the plasmid (control) with or without tryptophan, to score for

HMR repression. B) The plasmids indicated in A) were

transformed into a strain lacking major vacuolar proteases and

the SIR4 gene (GA73). Extracts of logarithmically growing cells

were analyzed by immunoblotting using a Sir4 and Mcm2

antibody. Asterisks indicate Sir4 bands.

(EPS)

Figure S2 Sir4C and Sir4N-C mediate mating type but not

telomeric repression even in the absence of Rif1. A) Mating of cells

expressing the Sir4N-C fusion. A Sir4 deletion strain (GA5822)

was transformed with the indicated Sir4 plasmids and a ten-fold

dilution series thereof was mixed in YPAD with a mating tester

strain GA858. After incubation at 30uC, cells were spotted on

plates lacking tryptophan for growth and on SD plates to score for

mating. All Sir4 constructs support mating in the sir4D strain.

Using quantitative mating assays as in Figure 1C, we note that

Sir4N-C cells mate less efficiently than Sir4C-expressing cells

(efficiency is 0.73%60.11% compared to wild type Sir4), although

they repress the HMR::TRP1 reporter more efficiently. We think

that our mating assay overestimates the efficiency of mating of

Sir4C cells, because the growth rate of these cells is much slower

than wild-type or Sir4N-C-expressing cells (i.e. see Figure 3A for

slower growth and Figure 6B for distorted nuclei). This gives the

resulting diploids (now SIR4/SIR4C) a growth advantage over

single colony haploids (SIR4C), which are used to normalize

mating efficiency. B) Silencing of URA3 reporter at Tel7L as in

Figure 3A, just that a strain background expressing the first 270

residues of Sir4 (sir4N; GA5809) was used. C) To monitor the

ADE2 reporter at Tel5R, the transformed cells (as in A) were

spotted in ten-fold dilution series onto YPAD plates, and color

developed after cell growth at 4uC. The reddish color indicates

repression, which is manifest only in the wild-type strain (SIR4) or

in sir4D complemented with a plasmid expressing full-length SIR4.

D) Mating assay as in A) using strains as in C) to test silencing at

HML of rif1D strains. All constructs except the vector control

support HM repression and allow efficient mating. E) Telomeric

silencing was tested in rif1D strains carrying both URA3 and ADE2

reporters as indicated, by ten-fold dilution series on plates lacking

uracil or on YPAD media, respectively (GA503, GA7137,

GA7144). F) Sir4 ChIP. Sir4, Sir4C and Sir4N-C were expressed

in a sir4D (GA5822) strain and their binding to HML and

telomeres analyzed by ChIP/QPCR using an antibody raised

against Sir4C. Primers used for QPCR are in Supplementary

Information S1. Bars represent averages of biological duplicates/

QPCR triplicates, data represent mean value 6 s.e.m. To the left

are schemes of the HML loci and telomeres analyzed indicating

the location of QPCR primer pairs (short black lines).

(EPS)

Figure S3 Sir4C repression is not altered in sir4D cells

containing Sir3-EGFP however Sir4C slightly de-represses in cells

SIR4 expressing Sir3-EGFP. The indicated Sir4 plasmids were

transformed into a yeast strain carrying Tel7L::URA3 and an

EGFP tag on the endogenous Sir3 and the indicated genotype at

the endogenous SIR4 locus (SIR4, GA3128; sir4N, GA6287; sir4D,

GA6288). Ten-fold dilution series were grown on selective plates

for the indicated plasmids (control), and the expression of the

URA3 reporter was scored on plates lacking uracil or containing

0.1% 5-FOA. Sir4C expression derepresses slightly in a wild-type

SIR4 background. For mating, the cells were mixed with a 106
excess of mater tester strain (GA858) on YPAD plates, grown

overnight at 30uC and then replica plated on plates selecting for

diploids.

(EPS)

Figure S4 Analysis of immunopurified Sir4 and MS spectrum of

pS63. A, B) Immunopurified Sir4-Myc was separated on 4–12%

NuPAGEs Novex Bis-Tris Gels and analyzed by silver staining or

immunoblotting using antibodies against Myc and Sir2. A strain

with untagged Sir4 was used as a specificity control (GA5589,

GA5691). The full-length Sir4 band in A) is indicated with an

asterisk. IN: cell extract, input of IP; P: pellet of whole cell extract;

SN: supernatant after IP; IP: glycine eluates from beads. C)

pS63 can be detected. CID spectrum of the Sir4 peptide

SRPSTAIHTpSPHQPS (m/z 841.88) derived from a combined

AspN and chymotrypsin digest. The neutral loss of phosphoric

acid is indicated by ‘-98’, the loss of water by ‘-18’.

(EPS)

Figure S5 In vitro phosphorylation of Sir4N by CDK does not

influence DNA binding. A) In vitro phosphorylation of recombinant

Sir4N with human Cyclin dependent kinase (CDK), Protein

Kinase C (PKC), Casein kinase II (CKII) and Ets regulated kinase

(ERK). For Sir4N, radiography and Coomassie staining are

shown. For the control substrates H1, Casein and MBP (Myelin

Basic Protein) only the radiography data is shown below the

respective Sir4N lane. B) In vitro phosphorylation of Sir4N,

Sir4NDD or H1 by CDK2/cycA kinase, shows that much CDK

phosphorylation is lost when S63/S84 are mutated. C) DNA

binding assay of Sir4N and Sir4NGG using the same conditions as

in B) but without radioactive labeling. Three independent

experiments were quantified, data represent mean values 6 sem.

(EPS)

Figure S6 sir4DD or sir4GG mutations silence efficiently at

telomeres. Sir4 phosphoacceptor site mutants as in Figure 8A/

8B but without the P2A mutation were integrated at the

endogenous SIR4 locus into a strain carrying both the Tel5-

R::ADE2 reporter gene and Tel7L::URA3 reporter gene. A colony
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of each strain was grown overnight and spotted onto YPAD for

color visualization of the ADE2 reporter in ten-fold dilution series.

Strains used are GA503, GA5822, GA6362, and GA6363.

(EPS)

Text S1 The Text S1 file contains supplementary methods

(ChIP) and tables for yeasts strains, plasmids and QPCR primers

used in this study.

(DOCX)
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