364 research outputs found

    Analytical study of electrical disconnect system for use on manned and unmanned missions

    Get PDF
    The objective of this contract is to establish an optimum electrical disconnect system design(s) for use on manned and unmanned missions. The purpose of the disconnect system is to electrically mate and demate the spacecraft to subsystem module interfaces to accomplish orbital operations. The results of Task 1 and Task 2 of the effort are presented. Task 1 involves the definition of the functional, operational, and environmental requirements for the connector system to support the leading prototype candidate concepts. Task 2 involves the documentation review and survey of available existing connector designs

    PRECISE 3D MEASUREMENT WITH STANDARD MEANS AND MINIMIAL USER INTERACTION - EXTENDED SINGLE-VIEW RECONSTRUCTION

    Get PDF
    The paper proposes a new method for general 3D measurement and 3D point reconstruction. Looking at its features, the method explicitly aims at practical applications. These features especially cover low technical expenses and minimal user interaction, a clear problem separation into steps that are solved by simple mathematical methods (direct, stable and optimal with respect to least error squares), and scalability. The method expects the internal and radial distortion parameters of the used camera(s) as inputs, and a plane quadrangle with known geometry within the scene. At first, for each single picture the 3D position of the reference quadrangle (with respect to each camera coordinate frame) is calculated. These 3D reconstructions of the reference quadrangle are then used to yield the relative external parameters of each camera regarding the first one. With known external parameters, triangulation is finally possible. The differences from other known procedures are outlined, paying attention to the stable mathematical methods (no usage of nonlinear optimization) and the low user interaction with good results at the same time

    Improved modelling of trains braking under low adhesion conditions

    Get PDF
    Predicting the behaviour of trains when braking under low adhesion conditions presents considerable challenges. This paper describes an approach to the problem using a model of the full train braking system known as LABRADOR (Low Adhesion Braking Dynamic Optimization for Rolling Stock) and an improved method for representing the creep force–creepage behaviour when low adhesion is presently known as WILAC (Water Induced Low Adhesion Creep Force Model). The development of these models and their integration are summarized and a number of test cases are presented to demonstrate the improvements which can be gained from this approach. A number of suggestions are made for future enhancements with the aim of providing brake engineers and systems integrators with reliable simulation tools for optimizing train braking performance when low adhesion is present

    Nan-O-Style – experiments and arts

    Get PDF
    In this project, high school students (aged 16-17) tested various protocols of experiments in nanotechnology and evaluated them whether such experiments could also be performed by middle school students (aged 11-15) or even elementary school students (aged 6-10). Protocols pre-selected and provided by the instructing team consisting of Sciencetainment and the Department of Biosciences, University of Salzburg were applied. Laboratory techniques such as thin-layer chromatography, measuring the contact angle by high-resolution 3D microscopy and analyzing and constructing surface layers represented some of the experiments performed. Moreover, students produced short video clips and images and designed photo-collages out of microscopic and electron microscopic pictures. Hence, the school students acquired a number of soft skills during this special science day

    Treatment of Refractory Cardiac Arrest by Controlled Reperfusion of the Whole Body:A Multicenter, Prospective Observational Study

    Get PDF
    Background: Survival following cardiac arrest (CA) remains poor after conventional cardiopulmonary resuscitation (CCPR) (6–26%), and the outcomes after extracorporeal cardiopulmonary resuscitation (ECPR) are often inconsistent. Poor survival is a consequence of CA, low-flow states during CCPR, multi-organ injury, insufficient monitoring, and delayed treatment of the causative condition. We developed a new strategy to address these issues. Methods: This all-comers, multicenter, prospective observational study (69 patients with in- and out-of-hospital CA (IHCA and OHCA) after prolonged refractory CCPR) focused on extracorporeal cardiopulmonary support, comprehensive monitoring, multi-organ repair, and the potential for out-of-hospital cannulation and treatment. Result: The overall survival rate at hospital discharge was 42.0%, and a favorable neurological outcome (CPC 1+2) at 90 days was achieved for 79.3% of survivors (CPC 1+2 survival 33%). IHCA survival was very favorable (51.7%), as was CPC 1+2 survival at 90 days (41%). Survival of OHCA patients was 35% and CPC 1+2 survival at 90 days was 28%. The subgroup of OHCA patients with pre-hospital cannulation showed a superior survival rate of 57.1%. Conclusions: This new strategy focusing on repairing damage to multiple organs appears to improve outcomes after CA, and these findings should provide a sound basis for further research in this area.</p

    Mental health care for irregular migrants in Europe: Barriers and how they are overcome

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    • …
    corecore