38 research outputs found

    Discovery of antivirulence agents against methicillin-resistant staphylococcus aureus

    Get PDF
    Antivirulence agents inhibit the production of disease-causing virulence factors but are neither bacteriostatic nor bactericidal. Antivirulence agents against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300, the most widespread community-associated MRSA strain in the United States, were discovered by virtual screening against the response regulator AgrA, which acts as a transcription factor for the expression of several of the most prominent S. aureus toxins and virulence factors involved in pathogenesis. Virtual screening was followed by similarity searches in the databases of commercial vendors. The small-molecule compounds discovered inhibit the production of the toxins alpha-hemolysin and phenol-soluble modulin α in a dose-dependent manner without inhibiting bacterial growth. These antivirulence agents are small-molecule biaryl compounds in which the aromatic rings either are fused or are separated by a short linker. One of these compounds is the FDA-approved nonsteroidal anti-inflammatory drug diflunisal. This represents a new use for an old drug. Antivirulence agents might be useful in prophylaxis and as adjuvants in antibiotic therapy for MRSA infections

    Development and validation of the Psychological Adaptation Scale (PAS): Use in six studies of adaptation to a health condition or risk

    Get PDF
    We introduce The Psychological Adaptation Scale (PAS) for assessing adaptation to a chronic condition or risk and present validity data from six studies of genetic conditions

    Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND)

    Get PDF
    Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Association between genes regulating neural pathways for quantitative traits of speech and language disorders

    No full text
    Abstract Speech sound disorders (SSD) manifest as difficulties in phonological memory and awareness, oral motor function, language, vocabulary, reading, and spelling. Families enriched for SSD are rare, and typically display a cluster of deficits. We conducted a genome-wide association study (GWAS) in 435 children from 148 families in the Cleveland Family Speech and Reading study (CFSRS), examining 16 variables representing 6 domains. Replication was conducted using the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 18 significant loci (combined p < 10−8) that we pursued bioinformatically. We prioritized 5 novel gene regions with likely functional repercussions on neural pathways, including those which colocalized with differentially methylated regions in our sample. Polygenic risk scores for receptive language, expressive vocabulary, phonological awareness, phonological memory, spelling, and reading decoding associated with increasing clinical severity. In summary, neural-genetic influence on SSD is primarily multigenic and acts on genomic regulatory elements, similar to other neurodevelopmental disorders

    Development and validation of the Psychological Adaptation Scale (PAS): Use in six studies of adaptation to a health condition or risk

    No full text
    OBJECTIVE: We introduce The Psychological Adaptation Scale (PAS) for assessing adaptation to a chronic condition or risk and present validity data from six studies of genetic conditions. METHODS: Informed by theory, we identified four domains of adaptation: effective coping, self-esteem, social integration, and spiritual/existential meaning. Items were selected from the PROMIS “positive illness impact” item bank and adapted from the Rosenberg self-esteem scale to create a 20-item scale. Each domain included five items, with four sub-scale scores. Data from studies of six populations: adults affected with or at risk for genetic conditions (N=3) and caregivers of children with genetic conditions (N=3) were analyzed using confirmatory factor analyses (CFA). RESULTS: CFA suggested that all but five posited items converge on the domains as designed. Invariance of the PAS amongst the studies further suggested it is a valid and reliable tool to facilitate comparisons of adaptation across conditions. CONCLUSION: Use of the PAS will standardize assessments of adaptation and foster understanding of the relationships among related health outcomes, such as quality of life and psychological well-being. PRACTICE IMPLICATIONS: Clinical interventions can be designed based on PAS data to enhance dimensions of psychological adaptation to a chronic health condition or risk

    Differing roles for TCF4 and COL8A2 in central corneal thickness and fuchs endothelial corneal dystrophy.

    Get PDF
    Fuchs endothelial corneal dystrophy (FECD) is the most common late-onset, vision-threatening corneal dystrophy in the United States, affecting about 4% of the population. Advanced FECD involves a thickening of the cornea from stromal edema and changes in Descemet membrane. To understand the relationship between FECD and central corneal thickness (CCT), we characterized common genetic variation in COL8A2 and TCF4, genes previously implicated in CCT and/or FECD. Other genes previously associated with FECD (PITX2, ZEB1, SLC4A11), and genes only known to affect CCT (COL5A1, FOXO1, AVGR8, ZNF469) were also interrogated. FECD probands, relatives and controls were recruited from 32 clinical sites; a total of 532 cases and 204 controls were genotyped and tested for association of FECD case/control status, a 7-step FECD severity scale and CCT, adjusting for age and sex. Association of FECD grade with TCF4 was highly significant (OR= 6.01 at rs613872; p = 4.8×10(-25)), and remained significant when adjusted for changes in CCT (OR= 4.84; p = 2.2×10(-16)). Association of CCT with TCF4 was also significant (p = 6.1×10(-7)), but was abolished with adjustment for FECD grade (p = 0.92). After adjusting for FECD grade, markers in other genes examined were modestly associated (p ∼ 0.001) with FECD and/or CCT. Thus, common variants in TCF4 appear to influence FECD directly, and CCT secondarily via FECD. Additionally, changes in corneal thickness due to the effect of other loci may modify disease severity, age-at-onset, or other biomechanical characteristics

    Severe vascular calcification and tumoral calcinosis in a family with hyperphosphatemia: a fibroblast growth factor 23 mutation identified by exome sequencing

    No full text
    BACKGROUND: Tumoral calcinosis is an autosomal recessive disorder characterized by ectopic calcification and hyperphosphatemia. METHODS: We describe a family with tumoral calcinosis requiring amputations. The predominant metabolic anomaly identified in three affected family members was hyperphosphatemia. Biochemical and phenotypic analysis of 13 kindred members, together with exome analysis of 6 members, was performed. RESULTS: We identified a novel Q67K mutation in fibroblast growth factor 23 (FGF23), segregating with a null (deletion) allele on the other FGF23 homologue in three affected members. Affected siblings had high circulating plasma C-terminal FGF23 levels, but undetectable intact FGF23 or N-terminal FGF23, leading to loss of FGF23 function. CONCLUSIONS: This suggests that in human, as in experimental models, severe prolonged hyperphosphatemia may be sufficient to produce bone differentiation proteins in vascular cells, and vascular calcification severe enough to require amputation. Genetic modifiers may contribute to the phenotypic variation within and between families
    corecore