629 research outputs found

    Turbulent Mixing in the Interstellar Medium -- an application for Lagrangian Tracer Particles

    Full text link
    We use 3-dimensional numerical simulations of self-gravitating compressible turbulent gas in combination with Lagrangian tracer particles to investigate the mixing process of molecular hydrogen (H2) in interstellar clouds. Tracer particles are used to represent shock-compressed dense gas, which is associated with H2. We deposit tracer particles in regions of density contrast in excess of ten times the mean density. Following their trajectories and using probability distribution functions, we find an upper limit for the mixing timescale of H2, which is of order 0.3 Myr. This is significantly smaller than the lifetime of molecular clouds, which demonstrates the importance of the turbulent mixing of H2 as a preliminary stage to star formation.Comment: 10 pages, 5 figures, conference proceedings "Turbulent Mixing and Beyond 2007

    A Chandra Observation of Supernova Remnant G350.1-0.3 and Its Central Compact Object

    Full text link
    We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3. The high resolution X-ray data reveal previously unresolved filamentary structures and allow us to perform detailed spectroscopy in the diffuse regions of this SNR. Spectral analysis demonstrates that the region of brightest emission is dominated by hot, metal-rich ejecta while the ambient material along the perimeter of the ejecta region and throughout the remnant's western half is mostly low-temperature, shocked interstellar/circumstellar medium (ISM/CSM) with solar-type composition. The data reveal that the emission extends far to the west of the ejecta region and imply a lower limit of 6.6 pc on the diameter of the source (at a distance of 4.5 kpc). We show that G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and calculate an age of 600-1200 years. The derived relationship between the shock velocity and the electron/proton temperature ratio is found to be entirely consistent with that of other SNRs. We perform spectral fits on the X-ray source XMMU J172054.5-372652, a candidate central compact object (CCO), and find that its spectral properties fall within the typical range of other CCOs. We also present archival 24 um data of G350.1-0.3 taken with the Spitzer Space Telescope during the MIPSGAL galactic survey and find that the infrared and X-ray morphologies are well-correlated. These results help to explain this remnant's peculiar asymmetries and shed new light on its dynamics and evolution

    The Nucleosynthetic Imprint of 15-40 Solar Mass Primordial Supernovae on Metal-Poor Stars

    Full text link
    The inclusion of rotationally-induced mixing in stellar evolution can alter the structure and composition of presupernova stars. We survey the effects of progenitor rotation on nucleosynthetic yields in Population III and II supernovae using the new adaptive mesh refinement (AMR) code CASTRO. We examine spherical explosions in 15, 25 and 40 solar mass stars at Z = 0 and 10^-4 solar metallicity with three explosion energies and two rotation rates. Rotation in the Z = 0 models resulted in primary nitrogen production and a stronger hydrogen burning shell which led all models to die as red supergiants. On the other hand, the Z=10^-4 solar metallicity models that included rotation ended their lives as compact blue stars. Because of their extended structure, the hydrodynamics favors more mixing and less fallback in the metal free stars than the Z = 10^-4 models. As expected, higher energy explosions produce more enrichment and less fallback than do lower energy explosions, and less massive stars produce more enrichment and leave behind smaller remnants than do more massive stars. We compare our nucleosynthetic yields to the chemical abundances in the three most iron-poor stars yet found and reproduce the abundance pattern of one, HE 0557-4840, with a zero metallicity 15 solar mass, 2.4 x 10^51 erg supernova. A Salpeter IMF averaged integration of our yields for Z=0 models with explosion energies of 2.4x10^51 ergs or less is in good agreement with the abundances observed in larger samples of extremely metal-poor stars, provided 15 solar mass stars are included. Since the abundance patterns of extremely metal-poor stars likely arise from a representative sample of progenitors, our yields suggest that low-mass supernovae contributed the bulk of the metals to the early universe.Comment: 16 pages, 11 figures; submitted to Ap

    Dosimetry and Gastrointestinal Toxicity Relationships in a Phase II Trial of Pelvic Lymph Node Radiotherapy in Advanced Localised Prostate Cancer.

    Get PDF
    AIMS:Pelvic lymph node (PLN) radiotherapy for high-risk prostate cancer is limited by late gastrointestinal toxicity. Application of rectal and bowel constraints may reduce risks of side-effects. We evaluated associations between intensity-modulated radiotherapy (IMRT) dose-volume data and long-term gastrointestinal toxicity. MATERIALS AND METHODS:Data from a single-centre dose-escalation trial of PLN-IMRT were analysed, including conventionally fractionated (CFRT) and hypofractionated (HFRT) radiotherapy schedules. Associations between volumes of rectum and bowel receiving specified doses and clinician- and patient-reported toxicity outcomes were investigated independently. A metric, δ median (δM), was defined as the difference in the medians of a volume between groups with and without toxicity at a specified dose and was used to test for statistically significant differences. RESULTS:Constraints were respected in most patients and, when exceeded, led to higher rates of gastrointestinal toxicity. Biologically relevant associations between rectum dose-points and toxicity were more numerous with both mild and moderate toxicity thresholds, but statistical significance was limited after correction for false discovery rate. Rectal V50Gy (CFRT) associated with grade 2+ bleeding; bowel V43Gy and V47 (HFRT/4 days/week schedule) associated with patient-reported loose stools and diarrhoea, respectively. Further investigation showed that CFRT patients with rectal bleeding had a mean rectal V50Gy above the treatment planning constraint. CONCLUSIONS:When dose-volume parameters are kept below tight constraints, toxicity is low. Residual dosimetry loses much of its predictive power for gastrointestinal toxicity in the setting of PLN-IMRT for prostate cancer. We have benchmarked dose-volume constraints for safely delivering PLN-IMRT using CFRT or HFRT

    Modeling Collapse and Accretion in Turbulent Gas Clouds: Implementation and Comparison of Sink Particles in AMR and SPH

    Full text link
    We implemented sink particles in the adaptive mesh refinement (AMR) hydrodynamics code FLASH. Sink particles are created in regions of local gravitational collapse, and their trajectories and accretion can be followed over many dynamical times. We perform a series of tests including the time integration of circular and elliptical orbits, the collapse of a Bonnor-Ebert sphere and a rotating, fragmenting cloud core. We compare the collapse of a highly unstable singular isothermal sphere to the theory by Shu (1977), and show that the sink particle accretion rate is in excellent agreement with the theoretical prediction. To model eccentric orbits and close encounters of sink particles accurately, we show that a very small timestep is often required, for which we implemented subcycling of the N-body system. We emphasize that a sole density threshold for sink particle creation is insufficient in supersonic flows, if the density threshold is below the opacity limit. In that case, the density can exceed the threshold in strong shocks that do not necessarily lead to local collapse. Additional checks for bound state, gravitational potential minimum, Jeans instability and converging flows are absolutely necessary for a meaningful creation of sink particles. We apply our new sink particle module for FLASH to the formation of a stellar cluster, and compare to a smoothed particle hydrodynamics (SPH) code with sink particles. Our comparison shows encouraging agreement of gas properties, indicated by column density distributions and radial profiles, and of sink particle formation times and positions. We find excellent agreement in the number of sink particles formed, and in their accretion and mass distributions.Comment: 30 pages, 17 figures, ApJ accepted, simulation movies available at http://www.ita.uni-heidelberg.de/~chfeder/videos.shtml?lang=e

    On the interaction of a thin, supersonic shell with a molecular cloud

    Full text link
    Molecular clouds (MCs) are stellar nurseries, however, formation of stars within MCs depends on the ambient physical conditions. MCs, over a free-fall time are exposed to numerous dynamical phenomena, of which, the interaction with a thin, dense shell of gas is but one. Below we present results from self-gravitating, 3-D smoothed particle hydrodynamics ({\small SPH}) simulations of the problem; seven realisations of the problem have been performed by varying the precollision density within the cloud, the nature of the post-collision shock, and the spatial resolution in the computational domain. Irrespective of the type of shock, a complex network of dense filaments, seeded by numerical noise, readily appears in the shocked cloud. Segregation of the dense and rarefied gas phases also manifests itself in a bimodal distribution of gas density. We demonstrate that the power-spectrum for rarefied gas is Kolomogorov like, while that for the denser gas is considerably steeper. As a corollary to the main problem, we also look into the possibly degenerative effect of the {\small SPH} artificial viscosity on the impact of the incident shell. It is observed that stronger viscosity leads to greater post-shock dissipation, that strongly decelerates the incident shock-front and promotes formation of contiguous structure, albeit on a much longer timescale. We conclude that too much viscosity is likely to enhance the proclivity towards gravitational boundedness of structure, leading to unphysical fragmentation.On the other hand, insufficient resolution appears to suppress fragmentation. Convergence of results is tested at both extremes, first by repeating the test case with more than a million particles and then with only half the number of particles in the original test case.Comment: 15 pages, 15 figures, and 1 Table; To appear in Monthly Notices to the RA

    Star Forming Dense Cloud Cores in the TeV {\gamma}-ray SNR RX J1713.7-3946

    Full text link
    RX J1713.7-3946 is one of the TeV {\gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at ~1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the 12CO(J=2-1) and 13CO(J=2-1) transitions at angular resolution of 90". The most intense core in 13CO, peak C, was also mapped in the 12CO(J=4-3) transition at angular resolution of 38". Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r^{-2.2±\pm0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to the enhanced synchrotron X rays around dense cores.Comment: 22 pages, 7 figures, to accepted in The Astrophysical Journal. A full color version with higher resolution figures is available at http://www.a.phys.nagoya-u.ac.jp/~sano/ApJ10/ms_sano.pd

    Six Years of Chandra Observations of Supernova Remnants

    Full text link
    We present a review of the first six years of Chandra X-ray Observatory observations of supernova remnants. From the official "first-light" observation of Cassiopeia A that revealed for the first time the compact remnant of the explosion, to the recent million-second spectrally-resolved observation that revealed new details of the stellar composition and dynamics of the original explosion, Chandra observations have provided new insights into the supernova phenomenon. We present an admittedly biased overview of six years of these observations, highlighting new discoveries made possible by Chandra's unique capabilities.Comment: 82 pages, 28 figures, for the book Astrophysics Update

    flepiMoP: The evolution of a flexible infectious disease modeling pipeline during the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic led to an unprecedented demand for projections of disease burden and healthcare utilization under scenarios ranging from unmitigated spread to strict social distancing policies. In response, members of the Johns Hopkins Infectious Disease Dynamics Group developed flepiMoP (formerly called the COVID Scenario Modeling Pipeline), a comprehensive open-source software pipeline designed for creating and simulating compartmental models of infectious disease transmission and inferring parameters through these models. The framework has been used extensively to produce short-term forecasts and longer-term scenario projections of COVID-19 at the state and county level in the US, for COVID-19 in other countries at various geographic scales, and more recently for seasonal influenza. In this paper, we highlight how the flepiMoP has evolved throughout the COVID-19 pandemic to address changing epidemiological dynamics, new interventions, and shifts in policy-relevant model outputs. As the framework has reached a mature state, we provide a detailed overview of flepiMoP's key features and remaining limitations, thereby distributing flepiMoP and its documentation as a flexible and powerful tool for researchers and public health professionals to rapidly build and deploy large-scale complex infectious disease models for any pathogen and demographic setup
    • …
    corecore