18 research outputs found

    G protein-coupled receptors: A target for microbial metabolites and a mechanistic link to microbiome-immune-brain interactions

    Get PDF
    Human-microorganism interactions play a key role in human health. However, the underlying molecular mechanisms remain poorly understood. Small-molecules that offer a functional readout of microbe-microbe-human relationship are of great interest for deeper understanding of the inter-kingdom crosstalk at the molecular level. Recent studies have demonstrated that small-molecules from gut microbiota act as ligands for specific human G protein-coupled receptors (GPCRs) and modulate a range of human physiological functions, offering a mechanistic insight into the microbe-human interaction. To this end, we focused on analysis of bacterial metabolites that are currently recognized to bind to GPCRs and are found to activate the known downstream signaling pathways. We further mapped the distribution of these molecules across the public mass spectrometry-based metabolomics data, to identify the presence of these molecules across body sites and their association with health status. By combining this with RNA-Seq expression and spatial localization of GPCRs from a public human protein atlas database, we inferred the most predominant GPCR-mediated microbial metabolite-human cell interactions regulating gut-immune-brain axis. Furthermore, by evaluating the intestinal absorption properties and blood-brain barrier permeability of the small-molecules we elucidated their molecular interactions with specific human cell receptors, particularly expressed on human intestinal epithelial cells, immune cells and the nervous system that are shown to hold much promise for clinical translational potential. Furthermore, we provide an overview of an open-source resource for simultaneous interrogation of bioactive molecules across the druggable human GPCRome, a useful framework for integration of microbiome and metabolite cataloging with mechanistic studies for an improved understanding of gut microbiota-immune-brain molecular interactions and their potential therapeutic use

    ST6GAL1-mediated aberrant sialylation promotes prostate cancer progression

    Get PDF
    Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX-Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics

    ST6GAL1-mediated aberrant sialylation promotes prostate cancer progression.

    Get PDF
    Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection

    Get PDF
    HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naĂŻve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression

    G protein-coupled receptors: A target for microbial metabolites and a mechanistic link to microbiome-immune-brain interactions

    Get PDF
    Human-microorganism interactions play a key role in human health. However, the underlying molecular mechanisms remain poorly understood. Small-molecules that offer a functional readout of microbe-microbe-human relationship are of great interest for deeper understanding of the inter-kingdom crosstalk at the molecular level. Recent studies have demonstrated that small-molecules from gut microbiota act as ligands for specific human G protein-coupled receptors (GPCRs) and modulate a range of human physiological functions, offering a mechanistic insight into the microbe-human interaction. To this end, we focused on analysis of bacterial metabolites that are currently recognized to bind to GPCRs and are found to activate the known downstream signaling pathways. We further mapped the distribution of these molecules across the public mass spectrometry-based metabolomics data, to identify the presence of these molecules across body sites and their association with health status. By combining this with RNA-Seq expression and spatial localization of GPCRs from a public human protein atlas database, we inferred the most predominant GPCR-mediated microbial metabolite-human cell interactions regulating gut-immune-brain axis. Furthermore, by evaluating the intestinal absorption properties and blood-brain barrier permeability of the small-molecules we elucidated their molecular interactions with specific human cell receptors, particularly expressed on human intestinal epithelial cells, immune cells and the nervous system that are shown to hold much promise for clinical translational potential. Furthermore, we provide an overview of an open-source resource for simultaneous interrogation of bioactive molecules across the druggable human GPCRome, a useful framework for integration of microbiome and metabolite cataloging with mechanistic studies for an improved understanding of gut microbiota-immune-brain molecular interactions and their potential therapeutic use

    Salivary bacterial signatures in depression-obesity comorbidity are associated with neurotransmitters and neuroactive dipeptides.

    No full text
    BackgroundDepression and obesity are highly prevalent, often co-occurring conditions marked by inflammation. Microbiome perturbations are implicated in obesity-inflammation-depression interrelationships, but how the microbiome mechanistically contributes to pathology remains unclear. Metabolomic investigations into microbial neuroactive metabolites may offer mechanistic insights into host-microbe interactions. Using 16S sequencing and untargeted mass spectrometry of saliva, and blood monocyte inflammation regulation assays, we identified key microbes, metabolites and host inflammation in association with depressive symptomatology, obesity, and depressive symptomatology-obesity comorbidity.ResultsGram-negative bacteria with inflammation potential were enriched relative to Gram-positive bacteria in comorbid obesity-depression, supporting the inflammation-oral microbiome link in obesity-depression interrelationships. Oral microbiome was more highly predictive of depressive symptomatology-obesity co-occurrences than of obesity or depressive symptomatology independently, suggesting specific microbial signatures associated with obesity-depression co-occurrences. Mass spectrometry analysis revealed significant changes in levels of signaling molecules of microbiota, microbial or dietary derived signaling peptides and aromatic amino acids among depressive symptomatology, obesity and comorbid obesity-depression. Furthermore, integration of the microbiome and metabolomics data revealed that key oral microbes, many previously shown to have neuroactive potential, co-occurred with potential neuropeptides and biosynthetic precursors of the neurotransmitters dopamine, epinephrine and serotonin.ConclusionsTogether, our findings offer novel insights into oral microbial-brain connection and potential neuroactive metabolites involved

    Long-Term Psychiatric Outcomes in Adults with History of Pediatric Traumatic Brain Injury

    No full text
    The objective of the study was to compare psychiatric outcomes in adults with and without history of pediatric traumatic brain injury (TBI). Youth ages 6 to 14 years hospitalized for TBI from 1992 to 1994 were assessed at baseline and at 3, 6, 12, and 24 months post-injury. In the current study, psychiatric assessments were repeated at 24 years post-injury with the same cohort, now adults ages 29 to 39 years. A control group of healthy adults also was recruited for one-time cross-sectional assessments. Outcome measures included: 1) presence of a psychiatric disorder since the 24-month assessment not present before the TBI ("novel psychiatric disorder," NPD), or in the control group, the presence of a psychiatric disorder that developed after the mean age of injury of the TBI group plus 2 years; and 2) Time-to-Event for onset of an NPD during the same time periods. In the TBI group, NPDs were significantly more common, and presence of a current NPD was significantly predicted by presence of a pre-injury lifetime psychiatric disorder and by abnormal day-of-injury computed tomography (CT) scan. Compared with controls, the TBI group also had significantly shorter Time-to-Event for onset of any NPD. These findings demonstrate that long-term psychiatric outcomes in adults previously hospitalized for pediatric TBI are significantly worse when compared with adult controls without history of pediatric TBI, both in terms of prevalence and earlier onset of NPD. Further, in the TBI group, long-term NPD outcome is predicted independently by presence of pre-injury psychiatric disorder and abnormal day-of-injury CT scan
    corecore