24 research outputs found

    Modern Space Craft - Antique Specifications

    Get PDF
    Spacecraft now and of the future are being controlled by EMC requirements of the past. Little has been done by the launch vehicle/spacecraft manufacturers to abandon MIL-STD-461C which was released in 1986 because most of the electronics equipment being used aboard current launch vehicles is approved by similarity and heritage to MIL-STD-46 1 C and its predecessors. Twenty years later these electronic equipment items are still not tested to today's MIL-STD-461E requirements because there is a risk that the items will fail to meet the requirements and thus the cost will increase if it becomes necessary to redesign the equipment. That cost is insignificant compared with the cost of losing an entire mission! In the 20 years that have elapsed since MIL-STD-461C was released, the EMC environment has undergone major changes. High speed digital devices have been created that have fundamental clock and bus frequencies that span the entire LV/SC frequency range from the Flight Termination Systems through C and S-Band telemetry. Personnel involved in ground operations routinely carry and use hand held transceivers and cellular telephones close by sensitive electronics equipment. There are now many more orbiting receivers and emitters, plus range assets have increased dramatically since 2001. It's way past time to bring requirements up-to-date

    Shield to Pin Coupling of Lightning-Like Transients on Payload Umbilical Cables on a Launch Pad

    Get PDF
    In this paper we describe in-situ testing of a long payload umbilical, on a launch site, injected with lightning- like transients and describe resulting pin-to-pin voltages. Injections and voltage measurements near the ground support equipment room, as well as at a location near the payload junction box, are made. The umbilical cables tested include an outer over-braid and the inner conductor coupling is examined for open circuit, short-circuit and various loads representative of spacecraft input impedances. This testing is important because the Kennedy Space Center (KSC) where the lightning occurrence is the highest in the United States, is the primary launch site for Launch Services Program spacecraft customers. Lightning planning is essential but developing a lightning plan is often overlooked or not adequately analyzed leaving the spacecraft vulnerable to time delays or even damage when lightning occurs. At other popular launch sites like Vandenberg Air Force Base (VAFB) where lightning occurs less often, although at the same or greater intensity when it does occur, lightning planning is often completely ignored by the spacecraft. The two major questions to be addressed in the lightning plan are what retesting should be done to establish a goodness level and what is the trigger criteria for this testing? The spacecraft will typically use a standard spacecraft check-out procedure to address the necessary retesting, but determining the trigger criteria is often an issue. For instance, a spacecraft needs to understand what their immunity is to a certain lightning magnitude and location. Determining the amount of current that can be coupled onto a spacecraft umbilical can be calculated by using worst case assumptions or measured with current probes and current measurement devices. Spacecraft can also determine what pin-to-pin voltages they are sensitive to, however pin-to-pin voltage measurements are not typically taken during the strike due to the invasive nature of this measurement. In this paper, we present detailed data on the shield to pin voltage transfer functions to provide insight to the spacecraft developers for lightning retest criteria planning. The results from this unique testing opportunity provide essential details on specific coupling mechanisms affecting spacecraft hardware that interfaces with the ground support equipment. This missing link between cable shield currents and payload susceptibility voltages has been methodically tested and representative data presented

    Model to Test Electric Field Comparisons in a Composite Fairing Cavity

    Get PDF
    Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite . a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown

    Electromagnetic Environment In Payload Fairing Cavities

    Get PDF
    An accurate determination of a spacecraft鈥檚 radio frequency electromagnetic field environment during launch and flight is critical for mission success. Typical fairing structures consist of a parabolic nose and a cylindrical core with diameters of 1 to 5 meters resulting in electrically large dimensions for typical operational sources at S, C and X band where the free space wavelength varies from 0.15 m to 0.03 m. These electrically large size and complex structures at present have internal fairing electromagnetic field evaluation that is limited to general approximation methods and some test data. Though many of today鈥檚 computational electromagnetic tools can model increasingly complex and large structures, they still have many limitations when used for field determination in electrically large cavities. In this dissertation, a series of test anchored, full wave computational electromagnetic models along with a novel application of the equivalent material property technique are presented to address the electrical, geometrical, and boundary constraints for electromagnetic field determination in composite fairing cavity structures and fairings with acoustic blanketing layers. Both external and internal excitations for these fairing configurations are examined for continuous wave and transient sources. A novel modification of the Nicholson Ross Weir technique is successfully applied to both blanketed aluminum and composite fairing structures and a significant improvement in computational efficiency over the multilayered model approach is obtained. The advantages and disadvantages of using commercially available tools by incorporating Multilevel Fast Multipole Method (MLFMM) and higher order method of moments (HO MoM) to extend their application of MoM to electrically large objects is examined for each continuous wave transmission case. The results obtained with these models are ii compared with those obtained using approximation techniques based on the Q factor, commonly utilized in the industry, and a significant improvement is seen in a prediction of the fields in these large cavity structures. A statistical distribution of data points within the fairing cavity is examined to study the nature of the fairing cavity field distribution and the effect of the presence of a spacecraft load on these fields is also discussed. In addition, a model with external application of Green鈥檚 function is examined to address the shielding effectiveness of honeycomb panels in a fairing cavity. Accurate data for lightning induced effects within a fairing structure is not available and hence in this dissertation, a transmission line matrix method model is used to examine induced lightning effects inside a graphite composite fairing structure. The simulated results are compared with test data and show good agreement

    Electromagnetic Cavity Effects from Transmitters Inside a Launch Vehicle Fairing

    Get PDF
    This paper provides insight into the difficult analytical issue for launch vehicles and spacecraft that has applicability outside of the launch industry. Radiation from spacecraft or launch vehicle antennas located within enclosures in the launch vehicle generates an electromagnetic environment that is difficult to accurately predict. This paper discusses the test results of power levels produced by a transmitter within a representative scaled vehicle fairing model and provides preliminary modeling results at the low end of the frequency test range using a commercial tool. Initially, the walls of the fairing are aluminum and later, layered with materials to simulate acoustic blanketing structures that are typical in payload fairings. The effects of these blanketing materials on the power levels within the fairing are examined

    Portable Lightning Detection System

    Get PDF
    No abstract availabl

    Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure

    Get PDF
    Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results

    Simple Statistical Model to Quantify Maximum Expected EMC in Spacecraft and Avionics Boxes

    Get PDF
    This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. Test and model data correlation is shown. In addition, this presentation shows application of the power balance and extention of this method to predict the variance and maximum exptected mean of the E-field data. This is valuable for large scale evaluations of transmission inside cavities

    NASA Applications for Computational Electromagnetic Analysis

    Get PDF
    Computational Electromagnetic Software is used by NASA to analyze the compatibility of systems too large or too complex for testing. Recent advances in software packages and computer capabilities have made it possible to determine the effects of a transmitter inside a launch vehicle fairing, better analyze the environment threats, and perform on-orbit replacements with assured electromagnetic compatibility

    Canonical Statistical Model for Maximum Expected Immission of Wire Conductor in an Aperture Enclosure

    Get PDF
    Prediction of the maximum expected electromagnetic pick-up of conductors inside a realistic shielding enclosure is an important canonical problem for system-level EMC design of space craft, launch vehicles, aircraft and automobiles. This paper introduces a simple statistical power balance model for prediction of the maximum expected current in a wire conductor inside an aperture enclosure. It calculates both the statistical mean and variance of the immission from the physical design parameters of the problem. Familiar probability density functions can then be used to predict the maximum expected immission for deign purposes. The statistical power balance model requires minimal EMC design information and solves orders of magnitude faster than existing numerical models, making it ultimately viable for scaled-up, full system-level modeling. Both experimental test results and full wave simulation results are used to validate the foundational model
    corecore