2014 IEEE International Symposium on Electromagnetic Compatibility August 3-8, Ralieigh NC

Simple Statistical Model to Quantify Maximum Expected EMC in Spacecraft and Avionics Boxes

Workshop Session FR-AM-2 "EMC for Space Applications"

Dawn Trout Launch Services Program, NASA Kennedy Space Center Paul Bremner Robust Physics

NASA Requirement Need to know RF environment in large fairings

- Challenges:
 - 1. Interior and exterior sources
 - C- S- and X-band transmitters
 - Lightning strike
 - External RF, interference
 - 2. Electrically large
 - Sensitive to details
 - 3. Details only known approximately
 - Fairing lining dimensions
 - Payload dimensions
 - Payload surface impedances

Model scale fairing EM field tests at KSC

- Fiber optic sensors to on a fiberglass mount used in 56 location within the fairing to measure the distribution.
- Spatial and frequency variation used.

Composite fairing half test set-up with fiberglass mount - outer probe positions

3D EM Wavefield modelers

Field distribution of lossless fairing model at 5.65 GHz of small composite model MLFMM (FEKO) and MoM (WIPL-D)

Rotational model of a typical large fairing with size of lab model fields shown for comparison

Robust Physics

460.2

409.2

358.2

307.2 256.2

205.2

154.1

103.1

52.11

Models have not correlated well with test

However, both model AND test show EM filed collapses to 2 parameter PDF

C-Band composite fairing position and frequency stirring test and model data following Chi distribution.

Robust Physics

Power balance (PWB)method Recently extended to predict Variance & Max Expected E-field

 $n = \frac{8\pi V f^2}{c^3}$

 $E[U] = \frac{Source \ power}{\omega\eta}$

An electronic enclosure of volume V has EM modal density

The asymptotic statistical <u>mean_</u>EM field energy in the enclosure is governed by the excitation source power and enclosure Q factor

Hill (2009) has shown that:
$$Q = 1/\eta$$
 $Q = \frac{3V}{2\mu_r \delta S}$, $\delta = \sqrt{\frac{1}{\pi f \mu_w \sigma_w}}$

where S is the surface area of the cavity walls μ_r , μ_w , and σ_w are respectively the relative permeability, the permeability, and the conductivity of the cavity walls.

Langley [2004] has shown the asymptotic relative variance of the cavity energy is:

$$\operatorname{RelVar}[U] = \frac{1}{\pi m} \left\{ \alpha - 1 + \frac{1}{2\pi m} \left[1 - e^{-2\pi m} \right] + \operatorname{E}_{1}(\pi m) \left[\cosh(\pi m) - \frac{1}{\pi m} \sinh(\pi m) \right] \right\}$$

where *m* is the EM modal overlap factor: $m = f \eta n = f n / Q$,

The relative variance of a field component at a point is: $1+2 \operatorname{RelVar}[U]$ Robust Physics

New Variance & Max Expected checked on modes of rectangular cavity

EM field Mean & Max Expected Measured

Robust Physics

EM field Mean & Max Expected Predicted with simple PWB statistical model

Conclusions

- Statistical PWB models look promising
 - Ideal for complex payloads in fairings when EM design parameters are only ever known approximately
 - Statistical model predicts:
 - Mean
 - Standard deviation
 - Max expected (eg 97.5% quartile)
 - No time wasted meshing details
 - PWB model solves in seconds on laptop computer
 - Can also predict induced current & voltages in wiring harnesses

