90 research outputs found

    π-Stacked polyphenolic dimers: A case study using dispersion-corrected methods

    Get PDF
    The accuracy of dispersion-corrected calculations (DFT-D2, DFT-D3 and DFT-NL) is assessed here, with large basis sets (def2-QZVP) to avoid incompleteness effects, for the most stable structure of a real-world polyphenol dimer chosen as an appropriate model. Natural polyphenols form such complexes with π-stacking playing a key stabilizing role. Our benchmark calculations predict its existence favored by 22–24 kcal/mol with respect to the isolated monomers, mainly driven by both π–π and H-bonding interactions. The adequate comparison of lower-cost DFT-based methods allowed bracketing their expected accuracy. These results thus pave the way towards reliable studies of challenging aggregation processes of natural products.The work in Alicante is supported by the ‘Ministerio de EducaciĂłn y Ciencia’ of Spain and the ‘European Regional Development Fund’ through project CTQ2011-27253. The work in Mons is supported by the Belgian National Fund for Scientific Research (FNRS). The work in Limoges is supported by the ‘Conseil RĂ©gional du Limousin’ and COST actions FA1003 ‘East–West Collaboration for Grapevine Diversity Exploration and Mobilization of Adaptive Traits for Breeding’ and CM0804 ‘Chemical Biology with Natural Products’. The work in Malaysia is supported by Akademi Sains Malaysia through the SAGA Grant C20 and by the Ministry of Higher Education through the Grant 600-RMI/ST/FRGS 5/3/Fst (4/2011). The authors gratefully acknowledge the support by the Operational Program Research and Development for Innovation–European Regional Development Fund (Project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic). I.B. gratefully thanks the ‘Association Djerbienne de France’ (ADF) for the financial support

    Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment

    Get PDF
    Natural anthocyanin pigments/dyes and phenolic copigments/co-dyes form noncovalent complexes, which stabilize and modulate (in particular blue, violet, and red) colors in flowers, berries, and food products derived from them (including wines, jams, purees, and syrups). This noncovalent association and their electronic and optical implications constitute the copigmentation phenomenon. Over the past decade, experimental and theoretical studies have enabled a molecular understanding of copigmentation. This review revisits this phenomenon to provide a comprehensive description of the nature of binding (the dispersion and electrostatic components of π–π stacking, the hydrophobic effect, and possible hydrogen-bonding between pigment and copigment) and of spectral modifications occurring in copigmentation complexes, in which charge transfer plays an important role. Particular attention is paid to applications of copigmentation in food chemistry.P.T. thanks the “Conseil Régional du Limousin” for financial support and CALI (CAlcul en LImousin). Financial support from the Czech Science Foundation (P208/12/G016), the Ministry of Education, Youth and Sports of the Czech Republic (project LO1305), and the Operational Program Education for Competitiveness-European Social Fund (project CZ.1.07/2.3.00/20.0058 of the Ministry of Education, Youth and Sports of the Czech Republic) is also gratefully acknowledged. The work at IMDEA was supported by the Spanish Ministerio de EconomĂ­a y Competitividad (MINECO; project CTQ2014-58801)

    Optical properties of wine pigments: theoretical guidelines with new methodological perspectives

    Get PDF
    Wine pigmentation results from the complex chemistry of anthocyanins. Their flavylium cation form is stabilized either by chemical transformation occurring during wine aging (e.g., pyranoanthocyanin formation), or by the formation of non-covalent complexes with (phenolic) copigments. Molecular modeling (quantum mechanics and molecular dynamics) is more and more adapted to understand wine chemistry and pigmentation. The constant developments of theoretical methodologies might get non-specialists easily lost. This manuscript is a review of the theoretical studies dedicated to the field of wine pigments, showing conformational analysis, energetics of the various forms, pigment/copigment (non-)covalent association, and charge transfer excited states. QM/MM calculations are newly performed here, which improve solvent description. The conclusion is a comprehensive guideline for an accurate prediction of light absorption by wine pigments and all related supramolecular processes.P.T. thanks INSERM and the ‘Conseil RĂ©gional du Limousin’. Financial support from the Czech Science Foundation (P208/12/G016), the Operational Program Research and Development for Innovations—European Regional Development Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic), the Barrande Project (No. 7AMB12FR026) and the Operational Program Education for Competitiveness—European Social Fund (project CZ.1.07/2.3.00/20.0058 of the Ministry of Education, Youth and Sports of the Czech Republic) is also gratefully acknowledged. The work at IMDEA was supported by the Spanish Ministerio de EconomĂ­a y Competitividad (MINECO; project CTQ2011-27317). M.L. thanks the Swedish e-Science Research Center (SeRC) for financial support

    Sex-Related Differences in Lactotroph Tumor Aggressiveness Are Associated With a Specific Gene-Expression Signature and Genome Instability

    Get PDF
    Sex-related differences have been reported in various cancers, in particular men with lactotroph tumors have a worse prognosis than women. While the underlying mechanism of this sexual dimorphism remains unclear, it has been suggested that a lower estrogen receptor alpha expression may drive the sex differences observed in aggressive and malignant lactotroph tumors that are resistant to dopamine agonists. Based on this observation, we aimed to explore the molecular importance of the estrogen pathway through a detailed analysis of the transcriptomic profile of lactotroph tumors from 20 men and 10 women. We undertook gene expression analysis of the selected lactotroph tumors following their pathological grading using the five-tiered classification. Chromosomic alterations were further determined in 13 tumors. Functional analysis showed that there were differences between tumors from men and women in gene signatures associated with cell morphology, cell growth, cell proliferation, development, and cell movement. Hundred-forty genes showed an increased or decreased expression with a minimum 2-fold change. A large subset of those genes belonged to the estrogen receptor signaling pathway, therefore confirming the potent role of this pathway in lactotroph tumor sex-associated aggressiveness. Genes belonging to the X chromosome, such as CTAG2, FGF13, and VEGF-D, were identified as appealing candidates with a sex-linked dysregulation in lactotroph tumors. Through our comparative genomic hybridization analyses (CGH), chromosomic gain, in particular chromosome 19p, was found only in tumors from men, while deletion of chromosome 11 was sex-independent, as it was found in most (5/6) of the aggressive and malignant tumors. Comparison of transcriptomic and CGH analysis revealed four genes (CRB3, FAM138F, MATK, and STAP2) located on gained regions of chromosome 19 and upregulated in lactotroph tumors from men. MATK and STAP2 are both implicated in cell growth and are reported to be associated with the estrogen signaling pathway. Our work confirms the proposed involvement of the estrogen signaling pathway in favoring the increased aggressiveness of lactotroph tumors in men. More importantly, we highlight a number of ER-related candidate genes and further identify a series of target molecules with sex-specific expression that could contribute to the aggressive behavior of lactotroph tumors in men

    The impact of plasma membrane lipid composition on flagella-mediated adhesion of enterohemorrhagic Escherichia coli

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell’s plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions

    Unraveling the performance of dispersion-corrected functionals for the accurate description of weakly bound natural polyphenols

    Get PDF
    Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. We have previously proposed a description of supramolecular polyphenol complexes by the B3P86 density functional coupled with some corrections for dispersion. We couple here the B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31, and S12L datasets for non-covalent interactions. Furthermore, the association energies of these complexes were carefully compared to those obtained by other dispersion-corrected functionals, such as B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, this set of models were also applied to a database composed of seven non-covalent polyphenol complexes of the most interest.FDM acknowledges financial support from the Swedish Research Council (Grant No. 621-2014-4646) and SNIC (Swedish National Infrastructure for Computing) for providing computer resources. The work in Limoges (IB and PT) is supported by the “Conseil RĂ©gional du Limousin”. PT gratefully acknowledges the support by the Operational Program Research and Development Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic). IB gratefully acknowledges financial support from “Association Djerbienne en France”

    Antioxidant-inspired drug discovery: antitumor metabolite is formed in situ from a hydroxycinnamic acid derivative upon free radical scavenging

    Get PDF
    Cancer cells generally possess higher levels of reactive oxygen species than normal cells, and this can serve as a possible therapeutic target. In this proof-of-concept study, an antioxidant-inspired drug discovery strategy was evaluated using a hydroxycinnamic acid derivative. The processing of oxidized mixtures of p-coumaric acid methyl ester (pcm) revealed a new antitumor lead, graviquinone. Graviquinone bypassed ABCB1-mediated resistance, induced DNA damage in lung carcinoma cells but exerted DNA protective activity in normal keratinocytes, and modulated DNA damage response in MCF-7 cells. The cytotoxic effect of pcm in MCF-7 cells was potentiated under H2O2-induced oxidative stress, and the formation of graviquinone was confirmed by Fenton's reaction on pcm. In silico density functional theory calculations suggested graviquinone as a kinetic product of pcm-scavenging (OH)-O-center dot radicals. Our results demonstrate the pharmacological value of an in situ-formed, oxidative stress-related metabolite of an antioxidant. This might be of particular importance for designing new strategies for antioxidant-based drug discovery

    Simulations de dynamique moléculaire de l interaction de composés naturels avec les membranes lipidiques

    No full text
    LIMOGES-BU Médecine pharmacie (870852108) / SudocLYON1-BU Santé (693882101) / SudocSudocFranceF

    Application of recent double-hybrid density functionals to low-lying singlet-singlet excitation energies of large organic compounds

    Get PDF
    The present work assesses some recently developed double-hybrid density functionals (B2π-PLYP, PBE0-DH, and PBE0-2) using linear-response Tamm-Dancoff Time-Dependent Density Functional Theory. This assessment is achieved against experimentally derived low-lying excitation energies of large organic dyes of recent interest, including some excitations dominated by charge-transfer transitions. Comparisons are made with some of the best-performing methods established from the literature, such as PBE0 or B3LYP hybrid or the recently proposed B2-PLYP and B2GP-PLYP double-hybrid models, to ascertain their quality and robustness on equal footing. The accuracy of parameter-free or empirical forms of double-hybrid functionals is also briefly discussed. Generally speaking, it turns out that double-hybrid expressions always provide more accurate estimates than corresponding hybrid methods. Double-hybrid functionals actually reach averaged accuracies of 0.2 eV, that can be admittedly considered close to any intended accuracy limit within the present theoretical framework
    • 

    corecore