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Abstract

The accuracy of dispersion-corrected calculations (DFT-D2, DFT-

D3 and DFT-NL) is assessed here, with large basis sets (def2-QZVP)

to avoid incompleteness effects, for the most stable structure of a real-

world polyphenol dimer chosen as an appropriate model. Natural

polyphenols form such complexes with π-stacking playing a key stabi-

lizing role. Our benchmark calculations predict its existence favoured

by 22–24 kcal/mol with respect to the isolated monomers, mainly

driven by both π-π and H-bonding interactions. The adequate com-

parison of lower-cost DFT-based methods allowed bracketing their

expected accuracy. These results thus pave the way towards reliable

studies of challenging aggregation processes of natural products.
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1 Introduction

Polyphenols sensu lato [1] (e.g., lignans and lignins, chalconoids and

flavonoids, condensed and hydrolysable tannins, phlorotannins, depsides, stil-

benoids, curcuminoids, anthraquinoids, etc.) constitute one of the most im-

portant groups of natural products, with some 105 defined structures [2].

They have been isolated from all plant organs (e.g., bark, wood, roots,

leaves, flowers, fruit, and seeds) in which they may accumulate in substantial

amounts. Therefore, they are quite abundant in human diets (e.g., fruit,

vegetables, spices and beverages) exhibiting various potential health bene-

fits (see for example [3] and [4]). In order to fully rationalize and increase

these beneficial effects, particular attention is paid to the chemical properties

involved in e.g., (i) their biological properties and (ii) their biomimetic syn-

theses. Non-covalent complexes have been suggested in last decades to play

an important role in these chemical properties. The high π-delocalization

observed in the polyphenol backbone would allow monomer self-association,

while the presence of OH substituents allows additional formation of strong

intermolecular H-bonds. For example, non-covalent interactions in polyphe-

nols lead to complexes involved in many key natural processes including: (i)

plant color persistence [5, 6]; and (ii) regio- and stereoselective biogenetic

reactions (see for example [7]). However, the definite role of these weak

interactions in polyphenol compounds is still under scrutiny; theoretical pre-

dictions are thus of (expectedly) high value for the rationalization of these

processes and they appear as the only current way to provide a direct molec-

ular visualization of these non-covalent dimers in solution. The theoretical

results thus appear issued from a “computational microscope” supporting

the indirect experimental visualization (e.g., bathochromic shift observed in

UV/Vis absorption measurements).
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A small yet emblematic group of polyphenols is that of oligostilbenoids,

biogenetically deriving from the oligomerisation of polyhydroxylated stilbene

precursors. The large variety of their chemical structures allows for a broad

range of biological activities including antibacterial, antioxidant, anti-fungal

and anti-inflammatory properties [8]. Oligostilbenoid polymerization is a

typical case where the importance of non-covalent interactions has been re-

cently highlighted: regio- and stereoselective synthesis is largely driven by the

ability of these compounds to self-assembly in solution prior to the oxidative

initiation stage [9,10]. The extended π-delocalization of ǫ-viniferin derivative

(Figure 1) is known to allow long-range interactions in solution [9, 11], as it

is indeed confirmed by NMR-based dynamical and structural studies [12].

Therefore, if theory aims at describing a complete picture of these interac-

tions and corresponding supramolecular association at the molecular scale,

the treatment of weak interactions is mandatory. Note also that regarding

the large size of the (if any) dimer involved precludes the use of methods

that unfavourably scale with system size. Thus, Density Functional Theory

(DFT) becomes the favoured and more judicious choice here, also keeping in

mind that such methodology should be used for large series of compounds

similar in size, as a predictive tool in the near future. Taken into account

these issues, the present study deals with structure and energetics of the

non-covalent dimer of ǫ-viniferin, which is used as a prototype to tackle as

accurately as possible these effects leading to dimerization. Various DFT

functionals including dispersive effects are used and the associated associa-

tion energies are compared to reference resutls. To present the achievements

towards the above goals, the manuscript is structured as follows: Section

2 presents the different DFT-based theoretical methods able to largely deal
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with non-covalent interactions at both intra- and intermolecular levels. Sec-

tion 3 reports the careful application of these methods concomitantly with

their benchmarking. This would then allow reaching predictive yet robust

conclusions about the stability of this kind of complexes, and complementar-

ily shedding light about the possible routes followed in their reactivity.

2 Theoretical methods

2.1 Modelling dispersion effects

Dispersion physics arises from locally induced interactions, be them intra-

or intermolecular, after the response of the electronic cloud in one region to

the presence of instantaneous and fluctuating charge densities in another [13].

In other words, whenever polarizable electronic clouds are present in two

spatially separated but interacting fragments or subsystems, even if weakly

overlapping, these correlated dipole-dipole interactions might clearly drive

self-assembly or supramolecular organization. To account for these interac-

tions is a real challenge for any theoretical method currently in use. A purely

ab initio treatment would therefore imply the use of energy magnitudes de-

pending simultaneously of properties at two separate points in space r and

r′. This is one of the reasons why classical Møller-Plesset perturbation the-

ory truncated at second order (MP2) is able to partly capture the physics

behind these interactions. It has been considered as the pioneering yet sim-

plest theoretical method to be applied within this context. Contrarily to

this, unmodified or poorly fitted DFT-based functionals completely fails due

to the short-sight treatment of matter imposed by the dependence of com-

mon (semi-local) functionals on the density (ρ) and its gradient (∇ρ) on r

exclusively. Here we briefly review the most common DFT-based dispersion

methods currently applied [14] to overcome this undesired but generalized
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drawback.

Due to the difficulty to self-consistently introduce the dispersion energy

(ED) into the computational treatment, one normally adds this contribution

to the electronic energy in a post self-consistent way: EDFT+D = EDFT +ED,

the density thus remains unaffected upon the dispersion treatment. The

modelling of ED term is based on the well-known pairwise additivity of effects

between atoms A and B belonging to weakly overlapping fragments:

ED =
N

∑

B>A

[

−
CAB

6

R6
AB

−
CAB

8

R8
AB

−
CAB

10

R10
AB

. . .

]

(1)

where Cj
AB are interatomic dispersion coefficients and RAB is the distance be-

tween the two atoms involved. The simplest approach, coined as D2 [15] trun-

cates the expansion at first order providing the 1/R6 attractive term as found

in the classical Lennard-Johnes potential. This term is however weighted in-

troducing a functional-dependent parameter (s6) to efficiently couple both

terms, EDFT and ED:

ED2 = −s6

N
∑

B>A

CAB
6

R6
AB

f(RAB), (2)

also relying on a damping function, f(RAB), to efficiently and more physically

switch from the infinite separate limit to distances belonging to the binding

region [16]. This correction has been successfully applied for complexes of the

most interest [17–19], although a more sophisticated correction (D3) has been

recently introduced to overcome some known limitations of the latter [20].

In this case the correcting term is given by:

ED3 = −
N

∑

B>A

∑

n=6,8

sn

CAB
n

Rn
AB

fn(RAB), (3)

expanding the former series and introducing now nth-order dispersion coef-

ficients allowing a better respond to changes in chemical environment. The
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mathematical form imposed to the damping function introduces two new

parameters, sr,n, to be defined for each value of n,

fn(RAB) =
1

1 + 6
(

RAB

sr,n RAB
0

)

−α , (4)

with the ratio RAB
0 =

√

CAB
8

CAB
6

. Note that the damping function reduces to a

simpler form for DFT-D2 and that more details about the form and (expect-

edly) negligible influence of other devised damping functions can be found in

Ref. [21].

Interestingly, there is a recent renewed interest [22–24] to obtain the dis-

persion energy directly from the electron density through a non-local (NL)

correlation functional which inherently account for this contribution. The

total energy is now EDFT+D = EDFT + ENL, with ENL being a correction

covering mostly long-ranged interactions between these instantaneous and

fluctuating induced local dipoles:

ENL =
∫

drρ (r)
[

β +
1

2

∫

dr′ρ (r′) Φ (r, r′)
]

(5)

using the specific construction called VV10 [25] for the Φ (r, r′) kernel. Note

that in the NL-approach a short-range attenuation functional-dependent pa-

rameter dubbed b, β = β(b), is required to efficiently couple the total corre-

lation energy to any particular exchange form used. Note also that a (more

costly) double integration is required for ENL, which implies the use of an

additional numerical grid on top of the grid used for the local exchange-

correlation functional; however, thanks to recent techniques [26] this step is

not a bottleneck for real calculations.
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2.2 Technical details

The choice of the exchange-correlation functionals BP86 and B3P86 is

motivated by two features: (i) the excellent performance shown by the lat-

ter model for bond dissociation energies [27–29] and optoelectronic prop-

erties [30] of many different polyphenols; and (ii) the lower computational

cost of the parent non-hybrid model (BP86), which would allow applications

to larger real-world systems and large series, due to the pervasive trade-off

between accuracy and computational resources. The related parameters of

eqs. (2)-(4) are reported in Table 1. Whereas these are taken from Grimme’s

work [20] for BP86 (-D2 or -D3), we have recently extended the B3P86 model

(-D2) in this way [5]. The attenuation parameter b required for the use of

both models together with eq. (5), BP86-NL and B3P86-NL, is also assessed

here for the first time (to the best of our knowledge) in order to obtain (vide

infra) its optimum value (Table 1).

All calculations were performed with the ORCA program [31] with the

built-in def2-xVP family of basis sets, unless otherwise noticed, i.e. the hi-

erarchy def2-SVP, def2-TZVP, and def2-QZVP. The cost of the calculations

was reduced in all cases by the use of the ’resolution of the identity’ (RI) [32]

and/or the ’chain-of-spheres’ (COSX) [33] algorithms, for Coulomb or ex-

change integrals, respectively; note that the largest calculations performed

here involve 7500 primitive basis functions. Concerning numerical grids for

integration, to be on the safer side, their size was always made larger than

hardwired defaults: grid4 and grid6 for computing EDFT and ENL, respec-

tively. Due to the (expected) flatness of potential energy curves around the

equilibrium geometry, we also imposed larger-than-default thresholds for the

optimization algorithm.
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The intermolecular interaction or association energy (∆E) was calculated

as the difference between the energy of the complex (ECX) and those of the

free monomers I and II (EMON−I and EMON−II). A negative value for ∆E

thus implies the existence of the complex with respect to the pair of isolated

monomers.

The basis set superposition error (BSSE), which introduces a spurious

(overstabilizing the dimer formation) energetic ∆E(BSSE) contribution to

∆E was calculated by the standard counterpoise method, giving thus rise to:

∆E =
[

ECX
CX(CX) − EMON−I

MON−I(MON − I) − EMON−II
MON−II(MON − II)

]

−∆E(BSSE),

(6)

in which:

∆E(BSSE) =
[

ECX
MON−I(CX) − ECX

MON−I(MON − I)

+ ECX
MON−II(CX) − ECX

MON−II(MON − II)
]

, (7)

where EQ
P (R) is the energy of fragment P calculated at the optimized geome-

try of Q and with the basis set of R. Note how this procedure always implies

an extra significant computational effort, which must be considered as a limit

for further extensions of this methodology to large series of compounds. On

the other hand, the BSSE can be nearly minimized, and thus the contribu-

tion ∆E(BSSE) ≃ 0, by applying a very large basis set, the def2-QZVP here;

we will thus compare the results of both approaches to estimate the results

at the Complete Basis Set (CBS) limit.
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3 Results and discussion

3.1 Optimized geometry of the complex

The geometry of the complex has been calculated at the BP86-D2, BP86-

D3, and B3P86-D2 levels with the def2-SVP basis set; the geometry is not

expected to significantly change upon use of larger basis sets. Figure 2 shows

two views of the head-to-tail complex formed, no matter the theoretical level

employed: (i) a large π-stacking of the backbone upon resulting monomer

interaction; (ii) a release of steric hindrance caused by the phenolic moieties

acting as substituents after adopting (almost) perpendicular positions with

respect to the central backbone; and (iii) the strong directionality and force

of some intermolecular hydrogen bonds O–H · · · O, occurring within the two

heads or at the tails; to name just a few interesting facts. The dimer in-

termolecular distance, defined as the closest distance between carbon atoms

of the central backbone belonging to both monomers, is around 2.99, 3.02,

and 2.98 Å, at the BP86-D2, BP86-D3, and B3P86-D2 levels, respectively.

These features clearly show how the choice of the exchange-correlation func-

tional is of relatively little importance to describe the geometrical features,

once a proper correction for dispersion is considered. Whereas the backbone

of isolated monomers is almost completely planar, the strong intermolecular

interactions (mainly H-bonds) slightly bent the monomers in the complex

geometry. These hydrogen bonds located at the edges of the backbone re-

duce the intermolecular distance to values that are normally repulsive (the

sum of C–C van der Waals radii is 3.5 Å); this effect has also recently been

detected with halogenated polycyclic aromatic complexes [34].
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3.2 Reference data

The size (N) of the system tackled here precludes the use of highly

sophisticated yet very costly ab initio methods like CCSD(T) or some of

its variants [35], despite recent progress [36] to reduce its formal depen-

dence with size: O(N7). The so-called Spin-Component-Scaled (SCS)1 MP2

method [37] was used as the current baseline to deal with dispersion effects.

Note that despite being a method scaling as O(N5), which dramatically

alleviates the computational cost with respect to CCSC(T), this (general-

purpose) method is known to provide remarkable accuracy for a wide variety

of covalent and non-covalent interacting molecular systems [38], including

para-diiodobenzene [39] or anthracene [40] dimers extracted from crystalline

structures and paracyclophane derivatives [41], and will be thus used as ref-

erence in the following. Note that all these single-point calculations were

performed here at the BP86-D3 optimized geometry for both the complex

and the isolated monomers. As expected, the calculated SCS-MP2 interac-

tion energy decreases, upon augmenting the size of basis sets: –21.8, –18.4,

and –16.2 kcal/mol with the def2-SVP, def2-TZVP, and def2-QZVP basis

sets, respectively. SCS-MP2 has been shown to slightly underestimate non-

covalent association energies [42]; thus, within the SCS-MP2-D2 corrected

method (s6 = 0.16, obtained with a large TZVPP basis set [42]), the com-

bination is somewhat considered as an artifact dropping the values to –24.3

and –22.1 kcal/mol with the def2-TZVP and def2-QZVP basis sets, respec-

tively. However, the high stability of these complexes is confirmed with a

new SCS-MP2 version, namely SCS-S66-MP2 [43] specifically suited for non-

covalent interactions, which is additionally known to become very accurate

1This method scales differently the contribution to correlation energy arising from
opposite- or same-spin contribution.
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in the description of strong hydrogen bonds. A –26.5 kcal/mol energy of

complexation was obtained with the def2-TZVP basis set, which serves to

firmly bracket the reference value and to validate afterwards the DFT-based

approximations employed.

3.3 Assessment of DFT-based dispersion corrections

Further reduction of computational time and associated resources will

necessarily proceed through the use of DFT-based approaches scaling as much

as O(N4), e.g. B3P86, or even as O(N3), e.g. BP86. The association ener-

gies obtained with BP86-D2, BP86-D3, and B3P86-D2 are compared to the

reference data in Figure 3. Note first that the complex is predicted to be

unbound without these -D2 or -D3 corrections, independently of the func-

tional employed. Note also that the calculations with the large def2-TZVP

and def2-QZVP basis sets were done at the def2-SVP respective optimized

geometries. The association energies are always largely affected by the BSSE:

the energy decreases by 7–8 kcal/mol when going from the def2-SVP to the

def2-TZVP, and only by 1.5–2.0 kcal/mol upon extension to the nearly sat-

urated def2-QZVP basis set. The use of the counterpoise correction, see eq.

(7), brings the results close to those achieved by using the large def2-QZVP

basis set, which can be thus considered near to the (unknown) CBS limit.

As a matter of example, the counterpoise-corrected BP86-D3 association en-

ergies are –15.8, –18.5, and –18.6 kcal/mol, with the def2-SVP, def2-TZVP,

and def2-QZVP, respectively, as compared to the values obtained without

BSSE correction i.e., –28.0, –20.9, and –19.1 kcal/mol for the three basis

set, respectively. The underlying BSSE can be thus estimated to be –12.2

(unacceptable), –2.4 (mildly acceptable), and –0.5 (within the “chemical ac-
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curacy” range) kcal/mol, for the def2-SVP, def2-TZVP or def2-QZVP basis

sets, respectively. This trend is similar to all the functionals tested here.

Note also that this way to calculate the BSSE is believed to slightly over-

estimate its effect, and some authors even propose to scale it down by a

factor between 0.5 and 1.0 [44, 45]. This is the reason why in the following

we will estimate (if any) the CBS limit as the average between the def2-

QZVP values with and without the counterpoise-correction. As a matter of

example, the BP86-D3/CBS result will be thus –18.8 ± 0.2 kcal/mol, being

the error bar the difference of each method with respect to its averaged value.

The s6 parameter entering into the B3P86-D2 form was originally assessed

with the cc-pVTZ basis set for a non-covalent polyphenol dimer [5] i.e., with

very similar interaction than the present dimer. The effect of using a par-

ticular family (cc-pVxZ or def2-xVP) of basis sets has been also investigated

here as a by-product. The cc-pVTZ value is –14.5 kcal/mol which reduces

to –11.2 kcal/mol after the corresponding counterpoise correction, which is

compared to –13.4 (or –11.4 when BSSE-corrected) and –11.7 kcal/mol with

the def2-TZVP or def2-QZVP, respectively. The s6 parameterization is thus

not expected to be significantly influenced by this basis set issue and would

not significantly affect the association energies.

We also recognize at this stage that the corrections discussed so far are

pairwise additive, which might be related to a slight tendency of BP86-D3

towards overbinding. A way to evaluate the (repulsive) amplitude of the

three-body contribution is through the function [46]:

E3−body = CABC
9

(3 cos θa cos θb cos θc + 1)

RABRBCRAC

, (8)

where ABC are all the atom triples, θi are the internal angles of the triangle
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formed by RAB − RBC − RAC , and the coefficient CABC
9 is approximated by

CABC
9 = −

√

CAB
6 CBC

6 CAC
6 . While this contribution is believed to be negligi-

ble for small complexes, around 2 % of the association energy of the benzene

dimer [47], it might become crucial for larger systems, around 25 % for two

graphene layers [46]. In the present case, this contribution amounts for 1.2

kcal/mol (which is 6–7 % of the association energy if we take for instance

the BP86-D3/CBS result of –18.8 kcal/mol as reference for estimating the

weight of this 3-body correction). This correction thus reduces the differ-

ence between the BP86-D2 and BP86-D3 results and appears not negligible.

However, it is not expected to significantly influence the conclusions about

the relative performance of methods and the derived association energies.

The relevance of the BP86-NL and B3P86-NL models was also assessed

for the present non-covalent polyphenol dimer. In this case, the exchange-

correlation functional is defined by:

Exc[ρ] = Ex[ρ(r)] + Elocal
c [ρ(r)] + Enon−local

c [ρ(r), ρ(r′)] (9)

where Ex is the B and B3 exchange parts, respectively, and Elocal
c (Enon−local

c )

is P86 (VV10) in both functionals. Again the sequence of def2-xVP basis

sets was used. The initial value imposed to the b parameter for an efficient

coupling of non-local correction with the exchange-correlation part was the

available values for related models [48] i.e., b = 3.5 (b = 4.0) for BP86

(B3P86). Note that for the cases known up to now (BLYP vs. B3LYP and

revPBE vs. revPBE0) the value of b turns to be always lower for pure than

for hybrid methods, as it should be upon a careful inspection of the whole

function β = β(b) entering into eq. (5) . We then accordingly modified it in

a systematic way to check the influence on the association energies. Table

2 presents the corresponding association energies, leading to the following
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conclusions: (i) going across the sequence def2-SVP/def2-TZVP/def2-QZVP

largely reduces the BSSE in line with the observations made before; and (ii)

the association energies depend on b values, B3P86 always providing larger

stabilization energies than BP86 at same b-value. Figure 4 exemplifies the

amplitude of this variation for both BP86-NL and B3P86-NL models when

the large def2-QZVP basis set is employed.

In the hope to obtain a refined value of b for the use of this correc-

tion for polyphenol compounds, three systems (benzene-benzene, benzene-

methanol, phenol-phenol, see Figure 5) were correspondingly selected. They

are representative of the leading π-π, π-OH, and OH-OH interactions, respec-

tively, as found in non-covalent polyphenol dimers. Note that very accurate

CCSD(T)/CBS results are available in the literature for the association en-

ergy of these complexes of moderate size [49,50], which will thus serve to guar-

antee the lowest possible deviation with respect to any benchmark thought.

To do that, the Mean Absolute Deviation (MAD) is reduced as much as

possible for association energies calculated at the BP86-NL and B3P86-NL

levels, according to the b values and with respect to the CCSD(T)/CBS as-

sociation energies taken as reference. Note also that the large def2-QZVP

basis set is used here to avoid any spurious BSSE. The following optimum

b = 4.4 and b = 5.1 values were found, providing a MAD lower than 0.2

kcal/mol in both cases with respect to the CCSD(T)/CBS results. We thus

now predict with these optimized b values, and again with the def2-QZVP

basis set, association energies of –19.4 and –17.0 kcal/mol, with the BP86-NL

and B3P86-NL models respectively, which are very close to the benchmark

SCS-MP2-based results (Figure 3).
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4 Conclusions

The association or interaction energy of a large real-world non-covalent

polyphenol dimer has been elucidated by dispersion-corrected DFT methods

using several flavours. First, benchmark calculations at improved second-

order perturbation theory were performed to adequately bracket the stabiliz-

ing energy gained when the two monomers self-associate to form the complex.

The use of large basis sets, up to the def2-QZVP, leads to sufficiently con-

verged results. Interestingly, we estimate at the complete basis set limit

(within an expected error bar or about 0.2 kcal/mol) complexation energies

of –17.6 kcal/mol at both the BP86-D2 and BP86-B3 levels, the latter after

taking into account the 3-body interactions, and of –11.5 kcal/mol at the

B3P86-D2 level. When these functionals combine in a purely ab initio fash-

ion with a correlation correction (the VV10 functional) and with an optimum

value for the attenuation b-parameter entering into this non-local functional,

the values are –19.4 and –17.0 kcal/mol (BP86-NL and B3P86-NL, respec-

tively). All these schemes seem to slightly underestimate the SCS-S66-MP2-

based results although, however, it is satisfying to see that, even being fairly

different in both the underlying density functional and the way in which they

incorporate the missing dispersion forces, they predict enough stabilization

energy to anticipate the existence of this kind of complexes almost indepen-

dently of expected thermal or environmental conditions. Thus, a practical

yet accurate combination of DFT-D2/DFT-D3 searches along potential en-

ergy hypersurfaces, thanks to rapid evaluation of gradients with these levels

and their moderate scaling with size, together with refinements employing

DFT-NL might constitute a valid strategy for further future studies.
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Lett. 240 (1995) 283.

[33] F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009)

98.
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• Table 1. List of parameters entering into the dispersion-corrected

methods employed.

• Table 2. Association energies (in kcal/mol) at several non-local dispersion-

corrected DFT levels, with the sequence of def2-xVP basis sets, as a

function of the attenuation parameter.
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Table 1:

Method s6 sr,6 s8 sr,8 b

BP86-D2 1.050 1.100 – – –

B3P86-D2 0.780 1.100 – – –

BP86-D3 1.000 1.139 1.683 1.000 –

BP86-NL – – – – 4.4

B3P86-NL – – – – 5.1
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Table 2:

∆E (kcal/mol)

Method Basis set b = 3.5 b = 4.0 b = 4.5 b = 5.0 b = 5.5

BP86-NL def2-SVP –38.5 –32.3 –27.4 –23.5

def2-TZVP –32.0 –25.5 –20.5 –16.4

def2-QZVP –29.9 –23.5 –18.5 –14.4

B3P86-NL def2-SVP –35.6 –30.8 –26.9 –23.6

def2-TZVP –28.6 –23.6 –19.6 –16.3

def2-QZVP –26.7 –21.7 –17.7 –14.4
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• Figure 1. Chemical structure of the studied compound. The hydrogen

atoms and corresponding C–H bonds have been omitted for clarity.

Figure created with ChemDraw.

• Figure 2. Optimized structure of the studied dimer from perpendicu-

lar (right) and side (left) views. Figure created with VMD.

• Figure 3. BSSE-uncorrected association energies (in kcal/mol) at

several dispersion-corrected DFT levels, and with the sequence of def2-

xVP (x=T,Q) basis sets. Figure created with Xmgrace.

• Figure 4. BSSE-uncorrected association energies (in kcal/mol) at

several non-local dispersion-corrected DFT levels, with the def2-QZVP

basis set, as a function of the attenuation parameter. Figure created

with Xmgrace.

• Figure 5. Selected interacting dimers for benchmarking. From top

to bottom: Benzene-Benzene, Benzene-Methanol, and Phenol-Phenol.

Figure created with VMD.
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Figure 5.
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