182 research outputs found

    High-Throughput Screening for Human Lysosomal β-N-Acetyl Hexosaminidase Inhibitors Acting as Pharmacological Chaperones

    Get PDF
    SummaryThe adult forms of Tay-Sachs and Sandhoff diseases result when the activity of β-hexosaminidase A (Hex) falls below ∼10% of normal due to decreased transport of the destabilized mutant enzyme to the lysosome. Carbohydrate-based competitive inhibitors of Hex act as pharmacological chaperones (PC) in patient cells, facilitating exit of the enzyme from the endoplasmic reticulum, thereby increasing the mutant Hex protein and activity levels in the lysosome 3- to 6-fold. To identify drug-like PC candidates, we developed a fluorescence-based real-time enzyme assay and screened the Maybridge library of 50,000 compounds for inhibitors of purified Hex. Three structurally distinct micromolar competitive inhibitors, a bisnaphthalimide, nitro-indan-1-one, and pyrrolo[3,4-d]pyridazin-1-one were identified that specifically increased lysosomal Hex protein and activity levels in patient fibroblasts. These results validate screening for inhibitory compounds as an approach to identifying PCs

    Remote ischemic preconditioning elaborates a transferable blood-borne effector that protects mitochondrial structure and function and preserves myocardial performance after neonatal cardioplegic arrest

    Get PDF
    ObjectiveRemote ischemic preconditioning is known to elicit production of a blood-borne cardioprotective factor that is infarct sparing in models of ischemia–reperfusion injury and myocardial damage reducing after cardiopulmonary bypass in human subjects. The mechanism of protection remains incompletely understood. In this study, we examined effects on mitochondrial structure and function in a noninfarct model of cardioplegic arrest.MethodsExplanted neonatal rabbit hearts were mounted in a Langendorff preparation and perfused with dialysate of blood taken from sham-treated or remotely preconditioned rabbits. Each heart was subsequently subjected to 1-hour cardioplegic arrest and 30-minute reperfusion periods, during which hemodynamic responses were measured. Mitochondria were isolated for structural and functional measurements.ResultsRelative to hearts with sham-treated dialysate, myocardial performance (systolic pressure, maximum positive and negative first derivatives of left ventricular pressure, and left ventricular end-diastolic pressure) was better preserved with dialysate from preconditioned rabbits. Similarly, mitochondria isolated from hearts with dialysate from preconditioned rabbits showed preserved respiration at complex I and IV in the electron transport chain (P < .01 and P < .05, respectively). Mitochondrial outer membrane integrity was also preserved, with diminished sensitivity of mitochondrial respiration to exogenous cytochrome c (P < .01) and less cytosolic diffusion of cytochrome c (P < .01). Mitochondrial resistance to calcium-mediated mitochondrial permeability transition pore opening was not affected.ConclusionThe cardioprotective factor in plasma dialysate after remote preconditioning preserves mitochondrial structure and function in a noninfarct cardioplegic arrest model. This protection is associated with preservation of global myocardial performance

    Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease

    Get PDF
    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α–β), “A” isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP– GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter–intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system

    Characterization of the Biosynthesis, Processing and Kinetic Mechanism of Action of the Enzyme Deficient in Mucopolysaccharidosis IIIC

    Get PDF
    Heparin acetyl-CoA:alpha-glucosaminide N-acetyltransferase (N-acetyltransferase, EC 2.3.1.78) is an integral lysosomal membrane protein containing 11 transmembrane domains, encoded by the HGSNAT gene. Deficiencies of N-acetyltransferase lead to mucopolysaccharidosis IIIC. We demonstrate that contrary to a previous report, the N-acetyltransferase signal peptide is co-translationally cleaved and that this event is required for its intracellular transport to the lysosome. While we confirm that the N-acetyltransferase precursor polypeptide is processed in the lysosome into a small amino-terminal alpha- and a larger ß- chain, we further characterize this event by identifying the mature amino-terminus of each chain. We also demonstrate this processing step(s) is not, as previously reported, needed to produce a functional transferase, i.e., the precursor is active. We next optimize the biochemical assay procedure so that it remains linear as N-acetyltransferase is purified or protein-extracts containing N-acetyltransferase are diluted, by the inclusion of negatively charged lipids. We then use this assay to demonstrate that the purified single N-acetyltransferase protein is both necessary and sufficient to express transferase activity, and that N-acetyltransferase functions as a monomer. Finally, the kinetic mechanism of action of purified N-acetyltransferase was evaluated and found to be a random sequential mechanism involving the formation of a ternary complex with its two substrates; i.e., N-acetyltransferase does not operate through a ping-pong mechanism as previously reported. We confirm this conclusion by demonstrating experimentally that no acetylated enzyme intermediate is formed during the reaction

    Partial Restoration of Mutant Enzyme Homeostasis in Three Distinct Lysosomal Storage Disease Cell Lines by Altering Calcium Homeostasis

    Get PDF
    A lysosomal storage disease (LSD) results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum–associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil—both US Food and Drug Administration–approved hypertension drugs—partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient–derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely α-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety

    Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection.

    Get PDF
    A B S T R A C T rIPC (remote ischaemic preconditioning) is a phenomenon whereby short periods of ischaemia and reperfusion of a tissue or organ (e.g. mesentery, kidney) can protect a distant tissue or organ (e.g. heart) against subsequent, potentially lethal, ischaemia. We, and others, have shown that transient limb ischaemia can provide potent myocardial protection experimentally and clinically during cardiac surgery. Nonetheless, our understanding of the signal transduction from remote stimulus to local effect remains incomplete. The aim of the present study was to define the humoral nature of rIPC effector(s) from limb ischaemia and to study their local effects in isolated heart and cardiomyocyte models. Using a Langendorff preparation, we show that infarct size after coronary artery ligation and reperfusion was substantially reduced by rIPC in vivo, this stimulus up-regulating the MAPKs (mitogen-activating protein kinases) p42/p44, and inducing PKCε (protein kinase Cε) subcellular redistribution. Pre-treatment with the plasma and dialysate of plasma (obtained using 15 kDa cut-off dialysis membrane) from donor rabbits subjected to rIPC similarly protected against infarction. The effectiveness of the rIPC dialysate was abrogated by passage through a C 18 hydrophobic column, but eluate from this column provided the same level of protection. The dialysate of rIPC plasma from rabbits and humans was also tested in an isolated fresh cardiomyocyte model of simulated ischaemia and reperfusion. Necrosis in cardiomyocytes treated with rIPC dialysate was substantially reduced compared with control, and was similar to cells pre-treated by &apos;classical&apos; preconditioning. This effect, by rabbit rIPC dialysate, was blocked by pretreatment with the opiate receptor blocker naloxone. In conclusion, in vivo transient limb ischaemia releases a low-molecular-mass (&lt;15 kDa) hydrophobic circulating factor(s) which induce(s) a potent protection against myocardial ischaemia/reperfusion injury in Langendorff-perfused hearts and isolated cardiomyocytes in the same species. This cardioprotection is transferable across species, independent of local neurogenic activity, and requires opioid receptor activation

    A Selective Inhibitor Gal‐PUGNAc of Human Lysosomal β‐Hexosaminidases Modulates Levels of the Ganglioside GM2 in Neuroblastoma Cells

    Get PDF
    Gal‐PUGNAc (see picture), a highly selective inhibitor for β‐hexosaminidases HEXA and HEXB is cell‐permeable and modulates the activity of HEXA and HEXB in tissue culture, increasing ganglioside GM2 levels. Gal‐PUGNAc should allow the role of these enzymes to be studied at the cellular level without generating a complex chemical phenotype from concomitant inhibition of O‐GlcNAcase

    A Rapid and Sensitive Method for Measuring NAcetylglucosaminidase Activity in Cultured Cells

    Get PDF
    A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4- Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination therapies
    corecore