456 research outputs found

    Alternative recipes for life satisfaction: Evidence from five world regions

    Get PDF

    Сутність та класифікація ризиків інвестиційної діяльності

    Get PDF
    Наводиться визначення поняттю "ризики інвестиційної діяльності" за рахунок поєднання його сутнісних характеристик, виконано узагальнення класифікації цих ризиків, запропоновано введення нової класифікаційної групи – "корпоративні ризики", які пов'язані з можливістю втрати контролю над підприємством інвестором-акціонером

    ApoE Receptor 2 Regulates Synapse and Dendritic Spine Formation

    Get PDF
    Apolipoprotein E receptor 2 (ApoEr2) is a postsynaptic protein involved in long-term potentiation (LTP), learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory.In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11α and PSD-95, affected synapse and dendritic spine formation. X11α decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density.These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11α and PSD-95

    Perceived economic self‑sufficiency: a countryand generation‑comparative approach

    Get PDF
    We thank Michael Camasso and Radha Jagannathan as well as Asimina Christoforou, Gerbert Kraaykamp, Fay Makantasi, Tiziana Nazio, Kyriakos Pierrakakis, Jacqueline O’Reilly and Jan van Deth for their contribution to the CUPESSE project (Seventh Framework Programme; Grant Agreement No. 61325). CUPESSE received additional funding from the Mannheim Centre for European Social Research (MZES) and the Field of Focus 4 “Self-Regulation and Regulation: Individuals and Organisations” at Heidelberg University. We further acknowledge helpful comments on this article by two anonymous reviewers. Julian Rossello provided valuable research assistance.Electronic supplementary material The online version of this article (https ://doi.org/10.1057/ s4130 4-018-0186-3) contains supplementary material, which is available to authorized users.Existing datasets provided by statistical agencies (e.g. Eurostat) show that the economic and financial crisis that unfolded in 2008 significantly impacted the lives and livelihoods of young people across Europe. Taking these official statistics as a starting point, the collaborative research project “Cultural Pathways to Economic Self-Sufficiency and Entrepreneurship in Europe” (CUPESSE) generated new survey data on the economic and social situation of young Europeans (18–35 years). The CUPESSE dataset allows for country-comparative assessments of young people’s perceptions about their socio-economic situation. Furthermore, the dataset includes a variety of indicators examining the socio-economic situation of both young adults and their parents. In this data article, we introduce the CUPESSE dataset to political and social scientists in an attempt to spark a debate on the measurements, patterns and mechanisms of intergenerational transmission of economic self-sufficiency as well as its political implications.CUPESSE project (Seventh Framework Programme; Grant Agreement No. 61325

    Patterns of Neurogenesis and Amplitude of Reelin Expression Are Essential for Making a Mammalian-Type Cortex

    Get PDF
    The mammalian neocortex is characterized as a six-layered laminar structure, in which distinct types of pyramidal neurons are distributed coordinately during embryogenesis. In contrast, no other vertebrate class possesses a brain region that is strictly analogous to the neocortical structure. Although it is widely accepted that the pallium, a dorsal forebrain region, is specified in all vertebrate species, little is known of the differential mechanisms underlying laminated or non-laminated structures in the pallium. Here we show that differences in patterns of neuronal specification and migration provide the pallial architectonic diversity. We compared the neurogenesis in mammalian and avian pallium, focusing on subtype-specific gene expression, and found that the avian pallium generates distinct types of neurons in a spatially restricted manner. Furthermore, expression of Reelin gene is hardly detected in the developing avian pallium, and an experimental increase in Reelin-positive cells in the avian pallium modified radial fiber organization, which resulted in dramatic changes in the morphology of migrating neurons. Our results demonstrate that distinct mechanisms govern the patterns of neuronal specification in mammalian and avian pallial development, and that Reelin-dependent neuronal migration plays a critical role in mammalian type corticogenesis. These lines of evidence shed light on the developmental programs underlying the evolution of the mammalian specific laminated cortex

    Populations of Radial Glial Cells Respond Differently to Reelin and Neuregulin1 in a Ferret Model of Cortical Dysplasia

    Get PDF
    Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not
    corecore