805 research outputs found

    Influence of Humidity on Ultraviolet Injury

    Get PDF
    High humidity enhances the injurious effect of ultraviolet radiation. This was demonstrated in experiments in which hairless mice were irradiated with Westinghouse FS-40-T-12 sunlamps while maintained in an environmental chamber allowing controlled conditions of relative humidity and temperature. Hairless mice given 10 MED (minimal erythemal dose) while maintained at 80% relative humidity had markedly greater exfoliation, crusting, and erosion of skin than did mice maintained at 5% and 10% relative humidity. Animals kept at 50% humidity had damage intermediate to those kept at high and low humidity. These morphologic observations were confirmed histologically.Additionally, water immersion enhances ultraviolet injury. Animals immersed in water for 6 hr prior to irradiation with 3 MED had more damage than animals irradiated but not immersed. Similarly, albino rabbits irradiated with 300 nm radiation from a xenon arc grating monochrometer had lower erythemal energy requirements on that part of their skin that had been hydrated with wet packs compared to nonhydrated skin

    Changing eruptive styles and textural features from phreatomagmatic to strombolian activity of basaltic littoral cones: Los Erales cinder cone, Tenerife, Canary Islands

    Get PDF
    Montaña Los Erales is a 70 m high Quaternary cinder cone in the Bandas del Sur region, south Tenerife. Field observations on excavated sections and SEM analysis of tephra samples from the cone suggest that the eruption style of this vent changed progressively from an initial hydrovolcanic phase, through a transitional stage, to one that was entirely strombolian. Clast sizes increase from ≤1 cm angular lapilli in hydrovolcanic samples to 15 cm bombs in strombolian samples. Vesicles also increase in size from 0.5 mm to 1.2 mm, becoming more rounded in the strombolian samples. Palagonitization, extensive in the hydrovolcanic deposits, becomes less noticeable in strombolian deposits. To investigate the causes for and the nature of these changes in eruptive style, products from each major unit were analysed for their morphology, using scanning electron microscopy with both SE and BSE imaging as tephra morphologies are known to reflect the eruptive regime and degree of explosivity at the time of eruption. SEM imaging of hydrovolcanic samples illustrate angular fragments that have been rapidly quenched and contain high levels of palagonitisation and zeolitisation, whereas strombolian samples appear to be less altered and display larger clast sizes and vesicles. Our results confirm that the initial phase of activity was largely driven by magma-water (coolant) interaction, where magma may have interacted with a lens of fresh ground or surface water, causing intense fragmentation of the magma. With proceeding eruptive activity the water became exhausted, giving rise to an entirely strombolian eruptive style. Additionally, fossil diatoms were found in hydrovolcanic samples, further emphasising the influence of a, probably fluvial, water source during the early phase of emplacement.La Montaña de Los Erales es un cono de cínder del Cuaternario de 70 m de altura situado en la zona de las Bandas del Sur, en el litoral meridional de la isla de Tenerife. Observaciones de campo en secciones excavadas en los flancos del cono y análisis SEM de las muestras de tefra sugieren que el estilo eruptivo de este aparato volcánico cambió progresivamente durante la erupción de una fase inicial hidrovolcánica a una final enteramente estromboliana, con estadios intermedios transicionales. El tamaño de los clastos aumenta de ≤1 cm de lapilli angular en las muestras hidrovolcánicas a bombas de 15 cm en las estrombolianas. Las vesículas también aumentan en tamaño desde 0,5 mm a 1,2 mm, volviéndose más redondeadas en las muestras estrombolianas. Los intensos procesos de palagonitización de los depósitos hidrovolcánicos son menos significativos en las fases estrombolianas. Con objeto de investigar la naturaleza y las causas de estos cambios se analizó la morfología de los productos de las principales fases. Se han utilizado para ello imágenes de microscopía electrónica (SE y BSE), ya que se sabe que las diferentes morfologías de estos piroclastos reflejan el régimen eruptivo y el grado de explosividad durante la erupción. Las imágenes SEM de las muestras hidrovolcánicas presentan fragmentos angulares que se han enfriado rápidamente y con elevado grado de palagonitización y zeolitización. Las estrombolianas, en cambio, aparecen menos alteradas y muestran mayor tamaño de clastos y vesículas. Los resultados obtenidos indican que la fase inicial de la erupción se caracteriza por una importante interacción magma-agua (refrigerante), probablemente relacionada con una cantidad limitada de agua superficial o freática que produjo la intensa fragmentación del magma. En el transcurso de la erupción la fuente de agua se agotó, dando lugar a las fases finales de carácter enteramente estromboliano. Fósiles de diatomeas, que se han encontrado asociados a las muestras hidrovolcánicas, refuerzan la posibilidad de que el agua fuera de origen superficial, probablemente el cauce de un barranco

    Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption

    Get PDF
    Lava domes are subjected to structural weakening that can lead to gravitational collapse and produce pyroclastic flows that may travel up to several kilometers from a volcano's summit. At Merapi volcano, Indonesia, pyroclastic flows are a major hazard, frequently causing high numbers of casualties. After the Volcanic Explosivity Index 4 eruption in 2010, a new lava dome developed on Merapi volcano and was structurally destabilized by six steam-driven explosions between 2012 and 2014. Previous studies revealed that the explosions produced elongated open fissures and a delineated block in the southern dome sector. Here, we investigated the geomorphology, structures, thermal fingerprint, alteration mapping and hazard potential of the Merapi lava dome by using drone-based geomorphologic data and forward-looking thermal infrared images. The block on the southern dome of Merapi is delineated by a horseshoe-shaped structure with a maximum depth of 8&thinsp;m and it is located on the unbuttressed southern steep flank. We identify intense thermal, fumarole and hydrothermal alteration activities along this horseshoe-shaped structure. We conjecture that hydrothermal alteration may weaken the horseshoe-shaped structure, which then may develop into a failure plane that can lead to gravitational collapse. To test this instability hypothesis, we calculated the factor of safety and ran a numerical model of block-and-ash flow using Titan2D. Results of the factor of safety analysis confirm that intense rainfall events may reduce the internal friction and thus gradually destabilize the dome. The titan2D model suggests that a hypothetical gravitational collapse of the delineated unstable dome sector may travel southward for up to 4&thinsp;km. This study highlights the relevance of gradual structural weakening of lava domes, which can influence the development fumaroles and hydrothermal alteration activities of cooling lava domes for years after initial emplacement.</p

    Scattering map for two black holes

    Get PDF
    We study the motion of light in the gravitational field of two Schwarzschild black holes, making the approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can be considered to be the result of the action of each black hole separately. Using this approximation, the dynamics is reduced to a 2-dimensional map, which we study both numerically and analytically. The map is found to be chaotic, with a fractal basin boundary separating the possible outcomes of the orbits (escape or falling into one of the black holes). In the limit of large separation distances, the basin boundary becomes a self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation distance, following a logarithmic decay law.Comment: 20 pages, 5 figures, uses REVTE

    Diffusion in normal and critical transient chaos

    Full text link
    In this paper we investigate deterministic diffusion in systems which are spatially extended in certain directions but are restricted in size and open in other directions, consequently particles can escape. We introduce besides the diffusion coefficient D on the chaotic repeller a coefficient D^{\hat D} which measures the broadening of the distribution of trajectories during the transient chaotic motion. Both coefficients are explicitly computed for one-dimensional models, and they are found to be different in most cases. We show furthermore that a jump develops in both of the coefficients for most of the initial distributions when we approach the critical borderline where the escape rate equals the Liapunov exponent of a periodic orbit.Comment: 4 pages Revtex file in twocolumn format with 2 included postscript figure

    Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption

    Get PDF
    The eruption that started off the south coast of El Hierro, Canary Islands, in October 2011 has emitted intriguing eruption products found floating in the sea. These specimens appeared as floating volcanic "bombs" that have in the meantime been termed "restingolites" (after the close-by village of La Restinga) and exhibit cores of white and porous pumice-like material. Currently the nature and origin of these "floating stones" is vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have collected and analysed the structure and composition of samples and compared the results to previous work on similar rocks found in the archipelago. Based on their high silica content, the lack of igneous trace element signatures, and the presence of remnant quartz crystals, jasper fragments and carbonate relicts, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary rocks that were picked up and heated by the ascending magma causing them to partially melt and vesiculate. They hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies in the Canary Islands as well as in similar Atlantic islands that rest on sediment/covered ocean crust (e.g. Cape Verdes, Azores). The occurrence of these "restingolites" does therefore not indicate the presence of an explosive high-silica magma that is involved in the ongoing eruption
    corecore