179 research outputs found

    Difficultés de la surveillance épidémiologique de la rougeole en Afrique : exemple de la Côte d'Ivoire

    Get PDF
    En zone tropicale, les cas de rougeole sont souvent sous-déclarés mais les auteurs exposent deux épidémies qui ont été considérées au début comme des manifestations de rougeole. La première épidémie s'est manifestée comme une épidémie de viroses à Chikungunya avec éruptions, hyperthermie et algies importantes, elle était due à un arbovirus Igbo-Ora. Dans l'autre cas il s'agissait d'enfants atteints d'éruptions avec hyperthermie et adénopathies évoquant la rubéole. Les auteurs évoquent la possibilité de diagnostic par excès dans le cadre de la surveillance de cette maladie-cible du PEV (Programme Elargi de Vaccination), hypothèse confirmée par la répartition des cas déclarés au niveau national avec une fréquence élevée des cas en contre-saison et chez certains adultes. (Résumé d'auteur

    Morbidité et mortalité hospitalières dues aux maladies diarrhéiques (Côte d'Ivoire)

    Get PDF
    Durant l'année 86 dans les 4 centres hospitaliers étudiés, 11,7% des enfants ont été hospitalisés pour diarrhées, le taux de mortalité par diarrhées est de 1,15%. Le taux de léthalité est de 9,9%. (Résumé d'auteur

    Combined fishing and climate forcing in the southern Benguela upwelling ecosystem: an end-to-end modelling approach reveals dampened effects

    Get PDF
    The effects of climate and fishing on marine ecosystems have usually been studied separately, but their interactions make ecosystem dynamics difficult to understand and predict. Of particular interest to management, the potential synergism or antagonism between fishing pressure and climate forcing is analysed in this paper, using an end-to-end ecosystem model of the southern Benguela ecosystem, built from coupling hydrodynamic, biogeochemical and multispecies fish models (ROMS-N 2 P 2 Z 2 D 2 -OSMOSE). Scenarios of different intensities of upwelling-favourable wind stress combined with scenarios of fishing top-predator fish were tested. Analyses of isolated drivers show that the bottom-up effect of the climate forcing propagates up the food chain whereas the top-down effect of fishing cascades down to zooplankton in unfavourable environmental conditions but dampens before it reaches phytoplankton. When considering both climate and fishing drivers together, it appears that top-down control dominates the link between top-predator fish and forage fish, whereas interactions between the lower trophic levels are dominated by bottom-up control. The forage fish functional group appears to be a central component of this ecosystem, being the meeting point of two opposite trophic controls. The set of combined scenarios shows that fishing pressure and upwelling-favourable wind stress have mostly dampened effects on fish populations, compared to predictions from the separate effects of the stressors. Dampened effects result in biomass accumulation at the top predator fish level but a depletion of biomass at the forage fish level. This should draw our attention to the evolution of this functional group, which appears as both structurally important in the trophic functioning of the ecosystem, and very sensitive to climate and fishing pressures. In particular, diagnoses considering fishing pressure only might be more optimistic than those that consider combined effects of fishing and environmental variability

    A New Family of Receptor Tyrosine Kinases with a Venus Flytrap Binding Domain in Insects and Other Invertebrates Activated by Aminoacids

    Get PDF
    Background: Tyrosine kinase receptors (RTKs) comprise a large family of membrane receptors that regulate various cellular processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT) linked through a single transmembrane domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor. Methods and Findings: Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR), were identified in many insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed monophyletic groups, the VFT group being close to that of GABA receptors and the TK one being close to that of insulin receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads indicates a putative function of VKR in reproduction and/or development. Conclusion: The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of human parasitic and infectious diseases

    Trophic level-based indicators to track fishing impacts across marine ecosystems

    Get PDF
    Trophic level (TL)-based indicators have been widely used to examine fishing impacts in aquatic ecosystems and the induced biodiversity changes. However, much debate has ensued regarding discrepancies and challenges arising from the use of landings data from commercial fisheries to calculate TL indicators. Subsequent studies have started to examine survey-based and model-based indicators. In this paper, we undertake an extensive evaluation of a variety of TL indicators across 9 well-studied marine ecosystems by making use of model- as well as survey and catch-based TL indicators. Using detailed regional information and data on fishing history, fishing intensity, and environmental conditions, we evaluate how well TL indicators are capturing fishing effects at the community level of marine ecosystems. Our results highlight that the differences observed between TL indicator values and trends is dependent on the data source and the TL cut-off point used in the calculations and is not attributable to an intrinsic problem with TL based indicators. All 3 data sources provide useful information about the structural changes in the ecosystem as a result of fishing, but our results indicate that only model-based indicators represent fishing impacts at the whole ecosystem level.JRC.H.1-Water Resource

    Combining multiple data sets to unravel the spatiotemporal dynamics of a data-limited fish stock

    Get PDF
    Publisher's version (útgefin grein)The biological status of many commercially exploited fishes remains unknown, mostly due to a lack of data necessary for their assessment. Investigating the spatiotemporal dynamics of such species can lead to new insights into population processes and foster a path towards improved spatial management decisions. Here, we focused on striped red mullet (Mullus surmuletus), a widespread yet data-limited species of high commercial importance. Aiming to quantify range dynamics in this data-poor scenario, we combined fishery-dependent and -independent data sets through a series of Bayesian mixed-effects models designed to capture monthly and seasonal occurrence patterns near the species’ northern range limit across 20 years. Combining multiple data sets allowed us to cover the entire distribution of the northern population of M. surmuletus, exploring dynamics at different spatiotemporal scales and identifying key environmental drivers (i.e., sea surface temperature, salinity) that shape occurrence patterns. Our results demonstrate that even when process and (or) observation uncertainty is high, or when data are sparse, if we combine multiple data sets within a hierarchical modelling framework, accurate and useful spatial predictions can still be made.CP’s postdoc was funded by Ifremer and France Filière Peche. The authors thank Bruno Ernande for suggestions and comments that improved the work during the analysis. The authors also thank two anonymous reviewers for their comments, which helped to improve the manuscript.Peer Reviewe

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Workshop on the production of swept-area estimates for all hauls in DATRAS for biodiver-sity assessments (WKSAE-DATRAS)

    Get PDF
    The workshop on the production of swept-area estimates for all hauls in DATRAS for biodiver-sity assessments (WKSAE-DATRAS) considered three groups of surveys for which data are sub-mitted to the Database of Trawl Surveys (DATRAS): various Beam Trawl Surveys, the Northeast Atlantic International Bottom Trawl Survey (Northeast Atlantic IBTS), and the North Sea Inter-national Bottom Trawl Survey (North Sea IBTS). All countries contributing to the above-mentioned surveys were represented by at least one par-ticipant during the workshop, apart from the Netherlands and Norway. The main objectives of the workshop were to establish tow-by-tow swept-area estimates for time-series as far back in time as possible, compare different approaches for the estimates of missing observations, and harmonize the resulting dataseries for biodiversity assessments. For all of the surveys considered, problems with data quality were detected. This included the Beam Trawl Surveys but was most pronounced for the North Sea IBTS. Outliers and potential erroneous data were listed for reporting back to the respective national institutes. In particular, missing observations or algorithms affected wing spread-based swept-area, which is needed in several applications. This workshop compared the Marine Scotland Science-MSS/OSPAR approach, which includes a data quality check for the information needed for the calculation of swept-area, and the DATRAS approach, which depends solely on correctly reported data from the national institutes. Larger data gaps were identified, in particular for several years of the North Sea IBTS. For those surveys, it is proposed that the best possible way forward at this moment is to use estimates based on the MSS/OSPAR approach. However, if dubious records (i.e. extreme outliers) were identified by the MSS/OSPAR and no other information was available, values (e.g. speed over ground or the depth at which a change from short to long sweeps should have happened) were taken from the manual. However, expe-rience has shown that the survey manuals are not followed in all instances, and so persistent country-specific and survey-specific deviations may occur. The national institutes are encouraged to check, correct, and fill in missing survey data through re-submissions to DATRAS. It is recommended that DATRAS data quality control on data sub-mission is extended for the information needed for the calculation of swept-area (e.g. distance, depth, door spread, and wing spread) and that this is done in close cooperation between the ICES Data Centre and the respective ICES survey working groups, WGBEAM (Working Group on Beam Trawl Surveys) and IBTSWG (International Bottom Trawl Survey Working Group).info:eu-repo/semantics/publishedVersio
    corecore