39 research outputs found

    Human feeder cell line for derivation and culture of hESc/hiPSc

    Get PDF
    AbstractWe have generated a human feeder cell line from early second trimester Placental Stromal Fibroblasts (ihPSF) stably over-expressing the polycomb protein BMI-1. These feeder cells retain the ability to maintain human Embryonic Stem cells (hESc) over long-term culture whereas hTERT or BMI-1/hTERT immortalised feeder cell lines do not. ihPSFs were able to support the derivation of a new hESc line in near xenofree (free of non-human animal components) conditions and support continued culture of newly derived hESc and human induced Pluripotent Stem (hiPS) cell lines in complete xenofree conditions necessary for clinical use

    A functional human motor unit platform engineered from human embryonic stem cells and immortalized skeletal myoblasts.

    Get PDF
    Although considerable research on neuromuscular junctions (NMJs) has been conducted, the prospect of in vivo NMJ studies is limited and these studies are challenging to implement. Therefore, there is a clear unmet need to develop a feasible, robust, and physiologically relevant in vitro NMJ model. We aimed to establish a novel functional human NMJs platform, which is serum and neural complex media/neural growth factor-free, using human immortalized myoblasts and human embryonic stem cells (hESCs)-derived neural progenitor cells (NPCs) that can be used to understand the mechanisms of NMJ development and degeneration. Immortalized human myoblasts were co-cultured with hESCs derived committed NPCs. Over the course of the 7 days myoblasts differentiated into myotubes and NPCs differentiated into motor neurons. Neuronal axon sprouting branched to form multiple NMJ innervation sites along the myotubes and the myotubes showed extensive, spontaneous contractile activity. Choline acetyltransferase and βIII-tubulin immunostaining confirmed that the NPCs had matured into cholinergic motor neurons. Postsynaptic site of NMJs was further characterized by staining dihydropyridine receptors, ryanodine receptors, and acetylcholine receptors by α-bungarotoxin. We established a functional human motor unit platform for in vitro investigations. Thus, this co-culture system can be used as a novel platform for 1) drug discovery in the treatment of neuromuscular disorders, 2) deciphering vital features of NMJ formation, regulation, maintenance, and repair, and 3) exploring neuromuscular diseases, age-associated degeneration of the NMJ, muscle aging, and diabetic neuropathy and myopathy

    Cigarette smoke extract profoundly suppresses TNFα-mediated proinflammatory gene expression through upregulation of ATF3 in human coronary artery endothelial cells

    Get PDF
    Endothelial dysfunction caused by the combined action of disturbed flow, inflammatory mediators and oxidants derived from cigarette smoke is known to promote coronary atherosclerosis and increase the likelihood of myocardial infarctions and strokes. Conversely, laminar flow protects against endothelial dysfunction, at least in the initial phases of atherogenesis. We studied the effects of TNFα and cigarette smoke extract on human coronary artery endothelial cells under oscillatory, normal laminar and elevated laminar shear stress for a period of 72 hours. We found, firstly, that laminar flow fails to overcome the inflammatory effects of TNFα under these conditions but that cigarette smoke induces an anti-oxidant response that appears to reduce endothelial inflammation. Elevated laminar flow, TNFα and cigarette smoke extract synergise to induce expression of the transcriptional regulator activating transcription factor 3 (ATF3), which we show by adenovirus driven overexpression, decreases inflammatory gene expression independently of activation of nuclear factor-κB. Our results illustrate the importance of studying endothelial dysfunction in vitro over prolonged periods. They also identify ATF3 as an important protective factor against endothelial dysfunction. Modulation of ATF3 expression may represent a novel approach to modulate proinflammatory gene expression and open new therapeutic avenues to treat proinflammatory diseases

    Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype

    Get PDF
    Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.This work was funded by the European Union’s Horizon 2020 research and innovation programme (BATCure, grant No. 666918 to DLM, JPB, SEM, TB and SS). JPB is funded by the Agencia Estatal de Investigación (PID2019-105699RB-I00/ AEI / 10.13039/501100011033 and RED2018-102576-T), Plan Nacional sobre Drogas (2020I028), Junta de Castilla y León (Escalera de Excelencia CLU-2017-03), Ayudas Equipos Investigación Biomedicina 2017 Fundación BBVA and Fundación Ramón Areces. SS was funded by a grant from the Mila’s Miracle Foundation. TB was supported by German Research Council (DFG) grant FOR2625. SM benefits from MRC funding to the MRC Laboratory for Molecular Cell Biology University Unit at UCL (award code MC_U12266B) towards laboratory and office space. We acknowledge Marcella Cesana for providing the TFEB virus. Graphical abstract was created using BioRender.com

    An episomal DNA vector platform for the persistent genetic modification of pluripotent stem cells and their differentiated progeny

    Get PDF
    The genetic modification of stem cells (SCs) is typically achieved using integrating vectors, whose potential integrative genotoxicity and propensity for epigenetic silencing during differentiation limit their application. The genetic modification of cells should provide sustainable levels of transgene expression, without compromising the viability of a cell or its progeny. We developed nonviral, nonintegrating, and autonomously replicating minimally sized DNA nanovectors to persistently genetically modify SCs and their differentiated progeny without causing any molecular or genetic damage. These DNA vectors are capable of efficiently modifying murine and human pluripotent SCs with minimal impact and without differentiation-mediated transgene silencing or vector loss. We demonstrate that these vectors remain episomal and provide robust and sustained transgene expression during self-renewal and targeted differentiation of SCs both in vitro and in vivo through embryogenesis and differentiation into adult tissues, without damaging their phenotypic characteristics

    Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis

    Get PDF
    CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases

    A HIF-LIMD1 negative feedback mechanism mitigates the pro-tumorigenic effects of hypoxia

    Get PDF
    The adaptive cellular response to low oxygen tensions is mediated by the hypoxia inducible factors (HIFs), a family of heterodimeric transcription factors composed of HIF-α and β subunits. Prolonged HIF expression is a key contributor to cellular transformation, tumourigenesis and metastasis. As such, HIF degradation under hypoxic conditions is an essential homeostatic and tumour suppressive mechanism. LIMD1 complexes with PHD2 and VHL in physiological oxygen levels (normoxia) to facilitate proteasomal degradation of the HIF-α subunit. Here, we identify LIMD1 as a HIF-1 target gene, which mediates a previously uncharacterised, negative regulatory feedback mechanism for hypoxic HIF-α degradation by modulating PHD2-LIMD1- VHL complex formation. Hypoxic induction of LIMD1 expression results in increased HIF-α protein degradation, inhibiting HIF-1 target-gene expression, tumour growth and vascularisation. Furthermore, we report that copy number variation at the LIMD1 locus occurs in 47.1% of lung adenocarcinoma patients, correlates with enhanced expression of a HIF target gene signature and is a negative prognostic indicator. Taken together, our data open a new field of research into the aetiology, diagnosis and prognosis of LIMD1-negative lung cancers

    Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis

    Get PDF
    CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.This work was funded by the European Regional Development Fund, European Union’s Horizon 2020 Research and Innovation Programme (BATCure grant No. 666918 to J.P.B., S.E.M., D.L.M., S.S., and T.R.M.; PANA grant No. 686009 to A.A.), Agencia Estatal de Investigación (PID2019-105699RB-I00/AEI/10.13039/501100011033 and RED2018‐102576‐T to J.P.B.; SAF2017-90794-REDT to A.A.), Instituto de Salud Carlos III (CB16/10/00282 to J.P.B.; PI18/00285; RD16/0019/0018 to A.A.), Junta de Castilla y León (CS/151P20 and Escalera de Excelencia CLU-2017-03 to J.P.B. and A.A.), Ayudas Equipos Investigación Biomedicina 2017 Fundación BBVA (to J.P.B.), and Fundación Ramón Areces (to J.P.B. and A.A.). SM benefits from MRC funding to the MRC Laboratory for Molecular Cell Biology University Unit at UCL (award code MC_U12266B) towards lab and office space. Part of this work was funded by Gero Discovery L.L.C. M.G.M. is an ISCIII-Sara Borrel contract recipient (CD18/00203)

    Aberrant upregulation of glycolysis mediates CLN7 neuronal ceroid lipofuscinosis

    Get PDF
    Resumen del trabajo presentado en el 43rd Annual Meeting of the Spanish Society of Biochemistry & Molecular Biology, celebrado en Barcelona, del 19 al 22 de julio de 2021CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in the autophagy-lysosomal pathway causes accumulation of structurally and bioenergetically impaired neuronal mi- tochondria. In vivo genetic approach revealed elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolysis activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFK- FB3, a glycolytic-promoting enzyme normally unstable in healthy neurons. Pharmacological inhibition of PFKFB3 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectified key disease hallmarks. Thus, aberrant upregulation of neuronal glycolysis contributes to CLN7 patho-genesis and targeting PFKFB3 may alleviate this and other lysosomal storage diseasesThis work was funded by Agencia Estatal de Investigación (PID2019-105699RB-I00).Peer reviewe

    Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy

    Get PDF
    Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wildtype genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model
    corecore