28 research outputs found

    Rocket and lidar studies of waves and turbulence in the Arctic middle atmosphere

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2016This dissertation presents new studies of waves and turbulence in the Arctic middle atmosphere. The study has a primary focus on wintertime conditions when the largescale circulation of the middle atmosphere is disrupted by the breaking of planetary waves associated with sudden stratospheric warming (SSW) events. We used ongoing Rayleigh lidar measurements of density and temperature to conduct a multi-year study of gravity waves in the upper stratosphere-lower mesosphere (USLM) over Poker Flat Research Range (PFRR) at Chatanika, Alaska. We analyzed the night-to-night gravity wave activity in terms of the wind structure and the ageostrophy. We find that the weak winds during disturbed conditions block the vertical propagation of gravity waves into the mesosphere. The gravity wave activity is correlated with the altitudes where the winds are weakest. During periods of weak winds we find little correlation with ageostrophy. However, during periods of stronger winds we find the USLM gravity wave activity is correlated with the ageostrophy in the upper troposphere indicating that ageostrophy in this region is a source of the gravity waves. Inter-annually we find the wintertime gravity wave activity is correlated with the level of disturbance of the middle atmosphere, being reduced in those winters with a higher level of disturbance and weaker winds. We used rocket-borne ion gauges to measure turbulence in the wintertime middle atmosphere while documenting the larger meteorological context from Rayleigh lidar and satellites. This investigation of turbulence was called the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX). During MTeX we found a highly disturbed atmosphere associated with an SSW where winds were weak and gravity wave activity was low. We found low levels of turbulence in the upper mesosphere. The turbulence was primarily found in regions of convective instability in the topside of mesospheric inversion layers (MILs). The strongest and most persist turbulence was found in a MIL that is associated with the breaking of a monochromatic gravity wave. These MTeX observations indicate that turbulence is generated by gravity wave breaking as opposed to gravity wave saturation. These MTeX findings of low levels of turbulence are consistent with recent model studies of vertical transport during SSWs and support the view that eddy transport is not a dominant transport mechanism during SSWs

    Role of Wind Filtering and Unbalanced Flow Generation in Middle Atmosphere Gravity Wave Activity at Chatanika Alaska

    No full text
    The meteorological control of gravity wave activity through ïŹltering by winds and generation by spontaneous adjustment of unbalanced ïŹ‚ows is investigated. This investigation is based on a new analysis of Rayleigh LiDAR measurements of gravity wave activity in the upper stratosphere-lower mesosphere (USLM,40–50km)on 152 nights at Poker Flat Research Range (PFRR), Chatanika, Alaska (65◩ N, 147◩ W), over 13 years between 1998 and 2014. The LiDAR measurements resolve inertia-gravity waves with observed periods between 1 h and 4 h and vertical wavelengths between 2 km and 10 km. The meteorological conditions are deïŹned by reanalysis data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA). The gravity wave activity shows large night-to-night variability, but a clear annual cycle with a maximum in winter,and systematic interannual variability associated with stratospheric sudden warming events. The USLM gravity wave activity is correlated with the MERRA winds and is controlled by the winds in the lower stratosphere through ïŹltering by critical layer ïŹltering. The USLM gravity wave activity is also correlated with MERRA unbalanced ïŹ‚ow as characterized by the residual of the nonlinear balance equation. This correlation with unbalanced ïŹ‚ow only appears when the wind conditions are taken into account, indicating that wind ïŹltering is the primary control of the gravity wave activity

    Gravity Wave Breaking Associated with Mesospheric Inversion Layers as Measured by the Ship-Borne BEM Monge Lidar and ICON-MIGHTI

    No full text
    International audienceDuring a recent 2020 campaign, the Rayleigh lidar aboard the Bñtiment d’Essais et de Mesures (BEM) Monge conducted high-resolution temperature measurements of the upper Mesosphere and Lower Thermosphere (MLT). These measurements were used to conduct the first validation of ICON-MIGHTI temperatures by Rayleigh lidar. A double Mesospheric Inversion Layer (MIL) as well as shorter-period gravity waves was observed. Zonal and meridional wind speeds were obtained from locally launched radiosondes and the newly launched ICON satellite as well as from the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA5) reanalysis. These three datasets allowed us to see the evolution of the winds in response to the forcing from the MIL and gravity waves. The wavelet analysis of a case study suggests that the wave energy was dissipated in small, intense, transient instabilities about a given wavenumber in addition to via a broad spectrum of breaking waves. This article will also detail the recent hardware advances of the Monge lidar that have allowed for the measurement of MILs and gravity waves at a resolution of 5 min with an effective vertical resolution of 926

    Daily Variability in the Terrestrial UV Airglow

    No full text
    New capability for observing conditions in the upper atmosphere comes with the implementation of global ultraviolet (UV) imaging from geosynchronous orbit. Observed by the NASA GOLD mission, the emissions of atomic oxygen (OI) and molecular nitrogen (N2) in the 133–168-nm range can be used to characterize the behavior of these major constituents of the thermosphere. Observations in the ultraviolet from the first 200 days of 2019 indicate that the oxygen emission at 135.6 nm varies much differently than the broader Lyman-Birge-Hopfield (LBH) emission of N2. This is determined from monitoring the average instrument response from two roughly 1000 km2 areas, well separated from one another, at the same time of each day. Variations in the GOLD response to UV emissions in the monitored regions are determined, both in absolute terms and relative to a running 7-day average of GOLD measurements. We find that variations in N2 emissions in the two separate regions are significantly correlated, while oxygen emissions, observed in the same fixed geographic regions at the same universal time each day, exhibit a much lower correlation, and exhibit no correlation with the N2 emissions in the same regions. This indicates that oxygen densities in the airglow-originating altitude range of 150–200 km vary independently from the variations in nitrogen, which are so well correlated across the dayside to suggest a direct connection to variation in solar extreme-UV flux. The relation of the atomic oxygen variations to solar and geomagnetic activity is also shown to be low, suggesting the existence of a regional source that modifies the production of atomic oxygen in the thermosphere

    Errors From Asymmetric Emission Rate in Spaceborne, Limb Sounding Doppler Interferometry: A Correction Algorithm With Application to ICON/MIGHTI

    No full text
    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on NASA's Ionospheric Connection Explorer (ICON) mission is designed to measure the neutral wind and temperature between 90 and ∌300 km altitude. Using the Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy technique, observations from MIGHTI can be used to derive thermospheric winds by measuring Doppler shifts of the atomic oxygen red line (630.0 nm) and green line (557.7 nm). Harding et al. (2017, https://doi.org/10.1007/s11214-017-0359-3) (Harding17) describe the wind retrieval algorithm in detail and point out the large uncertainties that result near the solar terminators and equatorial arcs, regions of large spatial gradients in airglow volume emission rates (VER). The uncertainties originate from the assumption of a constant VER at every given altitude, resulting in errors where the assumption is not valid when limb sounders, such as MIGHTI, observe regions with significant VER gradients. In this work, we introduce a new wind retrieval algorithm (Wu20) with the ability to account for VER that is asymmetric along the line of sight with respect to the tangent point. Using the predicted ICON orbit and simulated global VER variation, the greatest impact of the symmetric airglow assumption to the ICON vector wind product is found within 30° from the terminator when the spacecraft is in the dayside, causing an error of at least 10 m/s. The new algorithm developed in this study reduces the error near the terminator by a factor of 10. Although Wu20 improves the accuracy of the retrievals, it loses precision by 75% compared to Harding17
    corecore