18 research outputs found

    Native drivers of fish life history traits are lost during the invasion process

    Get PDF
    © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Rapid adaptation to global change can counter vulnerability of species to population declines and extinction. Theoretically, under such circumstances both genetic variation and phenotypic plasticity can maintain population fitness, but empirical support for this is currently limited. Here, we aim to characterize the role of environmental and genetic diversity, and their prior evolutionary history (via haplogroup profiles) in shaping patterns of life history traits during biological invasion. Data were derived from both genetic and life history traits including a morphological analysis of 29 native and invasive populations of topmouth gudgeon Pseudorasbora parva coupled with climatic variables from each location. General additive models were constructed to explain distribution of somatic growth rate (SGR) data across native and invasive ranges, with model selection performed using Akaike's information criteria. Genetic and environmental drivers that structured the life history of populations in their native range were less influential in their invasive populations. For some vertebrates at least, fitness-related trait shifts do not seem to be dependent on the level of genetic diversity or haplogroup makeup of the initial introduced propagule, nor of the availability of local environmental conditions being similar to those experienced in their native range. As long as local conditions are not beyond the species physiological threshold, its local establishment and invasive potential are likely to be determined by local drivers, such as density-dependent effects linked to resource availability or to local biotic resistance

    Native drivers of fish life history traits are lost during the invasion process

    Get PDF
    Rapid adaptation to global change can counter vulnerability of species to population declines and extinction. Theoretically, under such circumstances both genetic variation and phenotypic plasticity can maintain population fitness, but empirical support for this is currently limited. Here, we aim to characterize the role of environmental and genetic diversity, and their prior evolutionary history (via haplogroup profiles) in shaping patterns of life history traits during biological invasion. Data were derived from both genetic and life history traits including a morphological analysis of 29 native and invasive populations of topmouth gudgeon Pseudorasbora parva coupled with climatic variables from each location. General additive models were constructed to explain distribution of somatic growth rate (SGR) data across native and invasive ranges, with model selection performed using Akaike's information criteria. Genetic and environmental drivers that structured the life history of populations in their native range were less influential in their invasive populations. For some vertebrates at least, fitness-related trait shifts do not seem to be dependent on the level of genetic diversity or haplogroup makeup of the initial introduced propagule, nor of the availability of local environmental conditions being similar to those experienced in their native range. As long as local conditions are not beyond the species physiological threshold, its local establishment and invasive potential are likely to be determined by local drivers, such as density-dependent effects linked to resource availability or to local biotic resistance

    Integrative phylogenetic, phylogeographic and morphological characterisation of the Unio crassus species complex reveals cryptic diversity with important conservation implications

    Get PDF
    The global decline of freshwater mussels and their crucial ecological services highlight the need to understand their phylogeny, phylogeography and patterns of genetic diversity to guide conservation efforts. Such knowledge is urgently needed for Unio crassus, a highly imperilled species originally widespread throughout Europe and southwest Asia. Recent studies have resurrected several species from synonymy based on mitochondrial data, revealing U. crassus to be a complex of cryptic species. To address long-standing taxonomic uncertainties hindering effective conservation, we integrate morphometric, phylogenetic, and phylogeographic analyses to examine species diversity within the U. crassus complex across its entire range. Phylogenetic analyses were performed using cytochrome c oxidase subunit I (815 specimens from 182 populations) and, for selected specimens, whole mitogenome sequences and Anchored Hybrid Enrichment (AHE) data on ∼600 nuclear loci. Mito-nuclear discordance was detected, consistent with mitochondrial DNA gene flow between some species during the Pliocene and Pleistocene. Fossil-calibrated phylogenies based on AHE data support a Mediterranean origin for the U. crassus complex in the Early Miocene. The results of our integrative approach support 12 species in the group: the previously recognised Unio bruguierianus, Unio carneus, Unio crassus, Unio damascensis, Unio ionicus, Unio sesirmensis, and Unio tumidiformis, and the reinstatement of five nominal taxa: Unio desectus stat. rev., Unio gontierii stat. rev., Unio mardinensis stat. rev., Unio nanus stat. rev., and Unio vicarius stat. rev. Morphometric analyses of shell contours reveal important morphospace overlaps among these species, highlighting cryptic, but geographically structured, diversity. The distribution, taxonomy, phylogeography, and conservation of each species are succinctly described

    Parasite infection reflects host genetic diversity among non-native populations of pumpkinseed sunfish in Europe

    No full text
    International audienceSpecies introductions often coincide with loss of genetic diversity and natural enemies. Anthropogenic translocation of the North-American pumpkinseed Lepomis gibbosus (L., 1758) (Centrarchidae) and its further spread have resulted in recent species establishment in most European countries. This study determines genetic differentiation of non-native European pumpkinseed populations and identifies how their genetic structure relates to the distribution and abundance of parasite species. Microsatellite analysis indicated presence of three genetic lineages, which were well supported by discriminant analysis based on parasite abundance data. The first lineage clustered pumpkinseed populations from northern and southern France and showed high allelic richness, heterozygosity and parasite richness. The second included populations along the ‘‘Southern invasion corridor’’ connecting the rivers Rhine, Main and Danube. The fish exhibited low to high genetic and parasite diversity and generally high parasite abundance. The third lineage clustered populations with low genetic and parasite diversity, located in Portuguese reservoirs and water bodies along the upper Elbe. Parasite species richness was significantly associated with host microsatellite heterozygosity and allelic richness, a trend partially affected by richness of North-American parasites. Furthermore, our results indicate that parasite community composition may serve as a useful biological tool to discriminate non-native fish populations and their inter-relationships
    corecore