553 research outputs found
Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods
Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods
has been shown to be a challenging problem, in part due to the complicated
structure of the likelihood function consisting of several isolated local
maxima that dramatically reduces the efficiency of the sampling techniques.
Here we introduce a new fully Markovian algorithm, a Delayed Rejection
Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore
these kind of structures and we demonstrate its performance on selected LISA
data sets containing a known number of stellar-mass binary signals embedded in
Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings
Accuracy and effectualness of closed-form, frequency-domain waveforms for non-spinning black hole binaries
The coalescences of binary black hole (BBH) systems, here taken to be
non-spinning, are among the most promising sources for gravitational wave (GW)
ground-based detectors, such as LIGO and Virgo. To detect the GW signals
emitted by BBHs, and measure the parameters of the source, one needs to have in
hand a bank of GW templates that are both effectual (for detection), and
accurate (for measurement). We study the effectualness and the accuracy of the
two types of parametrized banks of templates that are directly defined in the
frequency-domain by means of closed-form expressions, namely 'post-Newtonian'
(PN) and 'phenomenological' models. In absence of knowledge of the exact
waveforms, our study assumes as fiducial, target waveforms the ones generated
by the most accurate version of the effective one body (EOB) formalism. We find
that, for initial GW detectors the use, at each point of parameter space, of
the best closed-form template (among PN and phenomenological models) leads to
an effectualness >97% over the entire mass range and >99% in an important
fraction of parameter space; however, when considering advanced detectors, both
of the closed-form frequency-domain models fail to be effectual enough in
significant domains of the two-dimensional [total mass and mass ratio]
parameter space. Moreover, we find that, both for initial and advanced
detectors, the two closed-form frequency-domain models fail to satisfy the
minimal required accuracy standard in a very large domain of the
two-dimensional parameter space. In addition, a side result of our study is the
determination, as a function of the mass ratio, of the maximum frequency at
which a frequency-domain PN waveform can be 'joined' onto a NR-calibrated EOB
waveform without undue loss of accuracy.Comment: 29 pages, 8 figures, 1 table. Accepted for publication in Phys. Rev.
Inventari espeleològic de les Balears
[cat] La catalogació de les cavitats mallorquines ja havia estat objecte de publicació dues vegades (vid. bibliografia]. La gran aportació de noves dades (s'ha passat de 545 cavitats relacionades a la darrera publicació a 883) ha fet necessari un altre recopilació i l'ampliació de l'lnventari a Menorca, Eivissa i Formentera. L'lnventari Espeleològic de les Balears que presentam ara és, doncs, una actualització dels coneixements sobre les cavitats mallorquines, amb inclusió de dades sobre un nombre limitat de fenòmens subterranis de la resta de les Balears, dades obtengudes de I'activitat dels grups mallorquins i de I'escasa bibliografia existent. Creim per tant que fora del cas de Mallorca, aquest lnventari "Balear" està en estat incipient
Analisis Stabilitas Hasil Gabah Galur-galur Padi Melalui Pendekatan Parametrik Dan Nonparametrik
The failure of a genotype to perform relatively the same in different environments is defined as the interaction Genotype x Environment (G x E interaction). The existence of G x E is often causing breeders facing difficulty to select superior genotypes to be tested further. Efforts to quantify the interaction between the average yields of genotype with environment can be done by parametric and nonparametric approaches. Experiments were conducted at 16 sites in dry season of 2008 and 2009. A total of 14 rice genotypes were tested using randomized complete block design. Combined analyses of variances of 16 sites showed highly significant effects of locations, genotypes, and genotypes x locations. Parametric stability analysis using the coefficient of variability (CVi) showed 6 lines (BP1808-1F-25, BP1352-1G-KN, IR76510-24-3, BP1178-2F-26, OM 5240, OM 1490) were stable. Based on parametric analysis of variance stability (Sv), however only 3 lines namely BP1808-1F-25, S4616-PN-7-3, and IR76510-24-3 were stable. Cultivar superiority method of parametric stability showed that BP1808-1F-25, OM 5240 and OM 1490 were stable, while OM4495 was stable based on Nassar and Huehn nonparametric methods. Results of Spearman's correlation analysis showed that between CVi and Sv, and CVi and Pi were significantly correlated with r = 0.556, and r = 0.560, respectively. It indicated that those three stability parameters had equal strength for determining the stability of the lines or cultivars tested. Based on the three stability approaches BP1808-1F-25 was considered as stable line, while check cultivar Dodokan was unstable. Parametric stability was found more accurate than nonparametric ones, when assumption of the data distribution was fulfilled
Self-consistent interface properties of d and s-wave superconductors
We develop a method to solve the Bogoliubov de Gennes equation for
superconductors self-consistently, using the recursion method. The method
allows the pairing interaction to be either local or non-local corresponding to
s and d-wave superconductivity, respectively. Using this method we examine the
properties of various S-N and S-S interfaces. In particular we calculate the
spatially varying density of states and order parameter for the following
geometries (i) s-wave superconductor to normal metal, (ii) d-wave
superconductor to normal metal, (iii) d-wave superconductor to s-wave
superconductor. We show that the density of states at the interface has a
complex structure including the effects of normal surface Friedel oscillations,
the spatially varying gap and Andeev states within the gap, and the subtle
effects associated with the interplay of the gap and the normal van Hove peaks
in the density of states. In the case of bulk d-wave superconductors the
surface leads to mixing of different order parameter symmetries near the
interface and substantial local filling in of the gap.Comment: 20 pages, Latex and 8 figure
LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.We acknowledge “Red Española de Surpercomputación” (RES) for awarding us access to the MareNostrum III machine based in Barcelona, Spain (Ref. FI-2015-2-0026 and FI-2015-3-0011). We also acknowledge PRACE for awarding us access to Fermi and Marconi Supercomputers at Cineca, Italy (Ref. 2015133120). Oriol Lehmkuhl acknowledges a PDJ 2014 Grant by AGAUR (Generalitat de Catalunya). Ugo Piomelli acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada under the Discovery Grant Programme (Grant No. RGPIN-2016-04391). Ricard Borrell acknowledges a Juan de la Cierva postdoctoral grant (IJCI-2014-21034). Ivette Rodriguez, Oriol Lehmkuhl, Ricard Borrell and Assensi Oliva acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ref. ENE2014-60577-R).Peer ReviewedPostprint (author's final draft
Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce
The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007
to provide the LISA Project with vetted codes, source distribution models, and
results related to parameter estimation. The Taskforce's goal is to be able to
quickly calculate the impact of any mission design changes on LISA's science
capabilities, based on reasonable estimates of the distribution of
astrophysical sources in the universe. This paper describes our Taskforce's
work on massive black-hole binaries (MBHBs). Given present uncertainties in the
formation history of MBHBs, we adopt four different population models, based on
(i) whether the initial black-hole seeds are small or large, and (ii) whether
accretion is efficient or inefficient at spinning up the holes. We compare four
largely independent codes for calculating LISA's parameter-estimation
capabilities. All codes are based on the Fisher-matrix approximation, but in
the past they used somewhat different signal models, source parametrizations
and noise curves. We show that once these differences are removed, the four
codes give results in extremely close agreement with each other. Using a code
that includes both spin precession and higher harmonics in the
gravitational-wave signal, we carry out Monte Carlo simulations and determine
the number of events that can be detected and accurately localized in our four
population models.Comment: 14 pages, 2 figures, 5 tables, minor changes to match version to be
published in the proceedings of the 7th LISA Symposium. For more information
see the Taskforce's wiki at http://www.tapir.caltech.edu/dokuwiki/lisape:hom
Self-trapping and stable localized modes in nonlinear photonic crystals
We predict the existence of stable nonlinear localized modes near the band
edge of a two-dimensional reduced-symmetry photonic crystal with a Kerr
nonlinearity. Employing the technique based on the Green function, we reveal a
physical mechanism of the mode stabilization associated with the effective
nonlinear dispersion and long-range interaction in the photonic crystals.Comment: 4 pages (RevTex) with 5 figures (EPS
The Mock LISA Data Challenges: from Challenge 3 to Challenge 4
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis
capabilities and to encourage their development. Each round of challenges
consists of one or more datasets containing simulated instrument noise and
gravitational waves from sources of undisclosed parameters. Participants
analyze the datasets and report best-fit solutions for the source parameters.
Here we present the results of the third challenge, issued in Apr 2008, which
demonstrated the positive recovery of signals from chirping Galactic binaries,
from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10
and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from
cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud
isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA
instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Waves, New York, June 21-26, 200
A Bayesian parameter estimation approach to pulsar time-of-arrival analysis
The increasing sensitivities of pulsar timing arrays to ultra-low frequency
(nHz) gravitational waves promises to achieve direct gravitational wave
detection within the next 5-10 years. While there are many parallel efforts
being made in the improvement of telescope sensitivity, the detection of stable
millisecond pulsars and the improvement of the timing software, there are
reasons to believe that the methods used to accurately determine the
time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More
specifically, the determination of the uncertainties on these TOAs, which
strongly affect the ability to detect GWs through pulsar timing, may be
unreliable. We propose two Bayesian methods for the generation of pulsar TOAs
starting from pulsar "search-mode" data and pre-folded data. These methods are
applied to simulated toy-model examples and in this initial work we focus on
the issue of uncertainties in the folding period. The final results of our
analysis are expressed in the form of posterior probability distributions on
the signal parameters (including the TOA) from a single observation.Comment: 16 pages, 4 figure
- …
