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Self-consistent interface properties ofd- and s-wave superconductors
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We develop a method to solve the Bogoliubov—de Gennes equation for superconductors self-consistently,
using the recursion method. The method allows the pairing interaction to be either local or nonlocal, corre-
sponding tos- and d-wave superconductivity, respectively. Using this method we examine the properties of
variousS-N and S-S interfaces. In particular, we calculate the spatially varying density of states and order
parameter for the following geometrie§) s-wave superconductor to normal metél) d-wave supercon-
ductor to normal metaljii) d-wave superconductor t®wave superconductor. We show that the density of
states at the interface has a complex structure including the effects of normal surface Friedel oscillations, the
spatially varying gap and Andeev states within the gap, and the subtle effects associated with the interplay of
the gap and the normal van Hove peaks in the density of states. In the case dfwaile superconductors,
the surface leads to mixing of different order-parameter symmetries near the interface and substantial local
filling in of the gap.[S0163-18208)07314-1

. INTRODUCTION been computed using the Eilenberger equatidn®,which
are an approximation to the Bogoliubov—de Gennes equa-
Interfaces in  superconductors, especially high-tion. These self-consistent solutions to the Eilenberger equa-

temperature superconductors, are of considerable interest f#pns have shown some interesting effects that have only
both fundamental physics and for applications. Many experi@fisen when the order parameter is calculated in a self-
ments have used both single electron tunneling and JosepRONSIStent manner.

son effects as probes of the energy gap and order parameter'" this paper we aim to show how to calculate self-
symmetry in the cuprates. For example Wollmetral* and consistent properties of superconducting interfaces by di-

Sun et al? constructed superconducting quantum in'[erfer-recuy solving the Bogoliubov—de Genneg equations. This
ence devices consisting of junctions between Y8a,0- approach has the advantage that self-consistency can be fully

. ; incorporated and also there is no need for the further ap-
(YBCO) and Pb, while Tsueet al® constructed supercon- S :
ducting rings consisting of YBCO thin films with two or proximations of the Eilenberger method. Our approach

: : : . X makes use of the recursion metRbdto solve the
thre_e grain-boundary junctions. Theoretical analysis of €XBogoliubov—de Gennes equation on an arbitrary tight-
periments such as these relies to a large extent on macrgiding lattice. Previously, the recursion method has been
scopic symmetry arguments and not on the microscopic dgjsed to examine the effects of disordersmwave’?22 and

tails of the actual interfaces. HOWeVer, in some cases tha_wavé4 SuperconductorS, and to determine the core struc-
microscopic physics at the interface can be an important fagure of vortices and explain the origin of de Haas—van Al-
tor in understanding the experimental results. For example, ifhen oscillations in the sugerconducting state particular,
mixing of different order-parameter symmetries occurs at the itak, Miller, and Gyaffy? have given a detailed descrip-
interface(because the interface breaks the bulk tetragonal otion of the application of the recursion method to local inter-
orthorhombic symmetpythe extent of such mixing can only actions, corresponding t®wave superconductors. Here we
be determined from microscopic calculations. Similarly, sup-extend this to the case of nonlocal interactions necessary to
pression of the order paramet@ither d-wave ors-wave  obtain d-wave superconductivity and apply the method to
near anS-N interface can lead to significant local density of various interfaces o and d-wave superconductors. Previ-
states within the bulk energy gap, and this can complicate theus fully self-consistent calculations of the Bogoliubov—de
analysis of single electron tunneling speétrahe micro-  Gennes equation, with nonlocal interactions, have been per-
scopic physics of surfaces and interfaces of hHighsuper- formed for very small systems, to examine the effect of
conductors are especially interesting because of the short ceingle impurity scatterifg and the effect of roughness at

herence length, and the probablevave gap function. superconducting interfacés.
In the past few years there have been a number of micro- The method of performing our self-consistent calculations
scopic calculations of surfaces and interfaces in supercomwill be described in Sec. Il. Here we introduce the

ducting systems with d-wave order parameter. Most of the Bogoliubov—de Gennes equation with a general interaction
theoretical results have been obtained using tunneling theory);; , and demonstrate how this general Hamiltonian can be
or Andreev’s approximation*in which the tunneling bar- solved self-consistently using the recursion method. A

rier and the order parameter are not found self-consistentlynecessary and nontrivial step in the calculation, as described
For tunnel junctions these approximations may be adequatéglow, involves finding the density of states accurately by
but we show below that self-consistency has significant efextrapolation of the recursion method continued fraction.
fects for interfaces with direct contact between the constitu- In Sec. Ill we proceed to apply the method to several
ents. Self-consistent properties of interfaces have previouslgifferent problems. First, various test calculations are de-
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scribed, including the local density of states for a uniform
system with no interactions, the local density of states for a
system with a local attractive interactidfocal s-wave su-
perconducting order paramefteand a system with a nonlo-
cal attractive interaction. We show that for this nonlocal in-
teraction there are two possible solutions, these solutions
being a nonlocak-wave superconducting order parameter
(extendeds-wave and a nonlocabl-wave superconducting —
order parameter.

Having tested the method on uniform systems we present —— l;j
our self-consistent solutions for the interface between two
different materials. We will consider three different inter-
faces. First, we consider a normal metaktwave supercon-
ductorN-S® interface where the pairing interaction is zero in
the normal regionl{l) and purely local in the superconduct-
Ing region 6,5)' Then we will copader_a:l—wavg to.normal FIG. 1. This is a schematic diagram of a tight-binding lattice,
metal Sd,'N' .|nterface where aga'” the interaction |.n the NOr-yjith particle and hole degrees of freedofy; couples particles on
mal region is zero and there is a nonlocal attractive interacsite j o holes on sitg. The difference between local and nonlocal
tion in the superconducting regioY). Finally, a study of @  pairing is highlighted by the dashétbcal pairing and solid(non-
s9-S° interface will be described. These three calculationgoca pairing lines.
enable us to make a comparative study of how the local
density of states and order parameter changes as a functi
of position across the different types of interface.

Particle Space

Hole Space

%‘i]milarly the pairing potentials are defined as

Il. THEORY/MODEL Ajj=—UjFjj ®)
A. The Bogoliubov-de Gennes equation where the anomalous density is
The Bogoliubov—de Gennes equation on a tight-binding
square lattice has the form

Fij:<q’iT\I’il>:; uf'(v) (1= F(Eq)]

u? u?
EHi,-( L)=En( ) (1)
J vj Vi — ()" (U (Ep). (6)
with
In Egs.(4) and(6) the sums only consider ternis, up to the
Hij 4y condensate chemical potentiat).
Hij = Ay —Hp) 2 A solution to the above system of equations will be fully

self-consistent provided that both the normél;;f;;) and
whereu] andv] are the particle and hole amplitudes, on siteanomalous 4;;) potentials are determined consistently with
i, associated with an eigenenerBy and whereA;; is the  the corresponding densities; andF;; via Egs.(3) and(5).

(possibly nonlocal pairing potential or gap function. Note that the normal Hartree-Fock tertdgn;; play an im-
In the fully self-consistent Bogoliubov—de Gennes equaJortant role and cannot be neglected. For on-site interactions
tion the normal-state Hamiltonia;; is given by these terms correspond to position dependent shifts in the
on-site energy, while for nonlocal interactions these terms
Hij=(t;+ i Ujinij) (1— &) renormalize the hopping; , leading to position-dependent
changes in the electronic bandwidth.
+(&—p+ %U“n“)éij, 3 Figure 1 illustrates the geometry corresponding to this

system of equations. The tight-binding lattice has nearest-
where u is the chemical potentiak; is the normal on-site  neighbor hopping interactions;{), as well as a coupling
energy of sitd, andt;; is the hopping integral between site  between particle and hole space, via a superconducting order
and sitej. For the rest of this papet;; is nonzero for nearest parameter 4;). If the interactions are purely on-sitéJ()
neighbors only. The on-site and off-site interaction termsattractions then the pairing potential will be purely local
1/2U;n;; and 1/2J;;n;; are the Hartree-Fock potentials cor- (A;;), corresponding to the dashed line in Fig. 1. On the
responding to the on-site interactith and the nonlocal in-  other hand, when the interaction is nonlocel(, i #]) the
teractionU;; . The charge density entering the Hartree-Fockpairing potentialA;; will also be nonlocal, as illustrated by

termsn;; is given by the solid lines in Fig. 1. For computational convenience we
limit both the hopping and nonlocal interaction to nearest-
o Ay, \— ny* N neighbor distances. We also need to specify over what en-

i ; (Vig¥jo) 2; () "uyT(En) ergy range the interaction has an effect, and as in B0&

. will assume that it only acts over a small energy range cen-
+oi(v))* [1=-F(En]. (4 tered on the Fermi energy, = E..
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B. The recursion method denote particle degrees of freedom by + and hole de-

The method we have adopted to solve the above system §f€es of freedom by = —. For exampleG, (i, ] ,E) repre-

equations is the recursion methtddThis method allows us Sents the Green’s function between the particle degree of
to calculate the electronic Green'’s functions freedom on sité and the hole degree of freedom on gite

To compute the Green’s functiond), we can closely
follow the method described by Litak, Miller, and Gyfy2*
for the special case of a local interactidd;(= U; g;;) . Using
their method we can transform the Hamiltonian to a block
\A}gdiagonal form

Gaa'(iuj -E):<ia|

El_H|ja,>' (7)

where the indice$ andj denote sites, whiler and a’ rep-
resent the particle or hole degree of freedom on each site.

El-a, -b, 0 0O 0 0
~bl El-a -b, 0O 0 0 0
0 —b} 0 0
El-H= ! ®)
0 0 . . . 0 0
0 0 0 -b El-a, —-by; O

0

where a, and b, are 2<2 matrices. Given this form for previously by Litak, Miller, and Gyxdfy.?* We calculate the
(ie|E1—H|ja') and expressing the Green’s function as  values fora, and b, exactly up to the firsim coefficients
o ) . using the recursion method. Then, noting the fact that the
Guar(isi,E)=(ia|(E1=H) ja’), (9  elements of the matrices, and b, vary in a predictable
the Green’s functions above can be evaluated as a matrfR@nner;’ we extrapolate the elements of the matrices for a
continued fraction so that further k iterations, wherek is usually very much greater
thanm. This enables us to compute the various densities of

G(i,j,E)=(E1-ay—bl{E1—a,—bj[E1l—a,— b} states, and the charge densitigs and F;; accurately with
e ey 1e 1 relatively little computer time and memory.
X(El-ag— ...) "bs] “bp} *b) 7, In terms of the Green’s functior@,,,(i,,E), the pairing
(10) and normal Hartree-Fock potentials; and 1/2J;;n;; are
given by
where
1 Ec . -
.. Gaa(i1i1E) Gaa’(iajvE) AIJ:2_LJI]J [G+7(I!]|E+I77)_G+*(|1J5E_|77)]
G(i,j,E)= . o . 11 ™ -Ec
GuaalihE) Ggurg(jyi,E)
X[1-f(E)]dE (12
Within Egs.(8) and(10) we have a formally exact repre- d
sentation of the Green’s functions. However in general botff"
the tridiagonal representation of the Hamiltonian, and the 1 E.
matrix continued fract_io.rﬁ8) will be infinite. In.practice one EUijnij :ﬁu”f [G, . (i,j,E+17)
can only calculate a finite number of terms in the continued “Ee
fraction exactly. In the terminology of the recursion method —G, . (i,j,E—19)]f(E)dE, (13)

it is necessary teerminatethe continued fractiofl232%-33

If we were to calculate up to and includirg andb, and  where 7 is a small positive number.
then simply set subsequent coefficients to zero, then the To obtain the above equations we have used the fact that
Green'’s function would haver2poles along the real axis. N -
The density of states would then correspond to a setnod 2 u; —(vi)
functions. Integrated quantities such as the densitjeand ol nd (um*
Fij could depend strongly on, especially since only a few _ o
of the 2n & functions would be within the relevant energy are the eigenvectors of E€L) with eigenvalue€, and —E,
range within the BCS cutof. . In order to obtain accurate respectively. Also note that the integrals in E¢52) and
results it would be necessary to calculate a large number d¢f3) are bounded by the cutof;, corresponding to the
exact levels, which would be expensive in terms of botheénergy dependent interaction
computer time and memory. _1U| for |E—p|<E

As a more efficient alternative we choose to terminate the U, (E)= or MI=Ec
continued fraction using the extrapolation method, as used ! 0 for |E—u|>E.,

(14)

(15
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TABLE I. This table shows which Green’s functions need to be calculated for systems with interactions
which are localU;; , nonlocal,U;;(1—6—ij), or both. The site labels correspond to the notation of Fig. 1.

Interaction Type Gi_(i,i,E) Gi.(i,j1,.E)  Gi:(i,j2,E)  Gix(iiz,E)  Gi.(i,ja.E)

Usi Y N N N N
U (1— &) N Y Y Y Y
Ui +U;(1-6;) Y Y Y Y Y

as in BCS theory. Our cutoff, can correspond to the BCS sity of states can be calculated and how the extrapolation of
cutoff Zwp arising from retardation of the electron-phonon the elements of the matricag andb, is performed.
interaction, or any other energy scale cutoff for the interac- The quantity of interest is the local particle density of
tion that may be applicable for high-temperature superconstates, which can be calculated from the following expres-
ductors. sion:

C. Achieving self-consistency

1

Using the above methods to calculatg and U;;n;; we Ni(E)= 2 G (LLEHIm) =G (11 E=1 )]
need to achieve a fully self-consistent solution. First, we (18
make use of any symmetries in the system in order to mini-
mize the number of calculations that are necessary. For ex- Consider first a noninteracting system whedg =0,
ample, on an infinite square lattice with no variation in anyu=0, =0, andt;;=1 for nearest neighbors and zero ev-
of the potentials, only one independent site needs to be caérywhere else. Figure 2 shows the local particle density of
culated since this site can be mapped onto all of the othegtates for a calculation where the number of exact continued
sites. Second, once we have decided which sites need to fi@ction levels wasm=50 and the elements &, and b,
calculated self-consistently;; andn;; can be calculated for were extrapolated for 2000 more values. For this calculation
those sites, remembering that on a square lattice each sitee convergence parametgmwas chosen ag=0.02. Figure
will have four nearest neighbors. This implies that in generaR shows that using the extrapolation method the central loga-
we will have to calculate nine different Green’s functions in rithmic van Hove singularity and the sharp band edges can
order to calculated;; andn;;. This can be seen by consid- be resolved very well. Figure 3 shows the first 100 continued
ering sitei in Fig. 1 and noting that we need to calculate thefraction coefficientbl!, where the first 50 are calculated
Green’s functions shown in Table |, depending on whethedirectly using the recursion method and the rest are the ex-
the interaction is purely local, purely nonlocal, or both localtrapolated values. It is clear from the figure that the oscilla-
and nonlocal. Having calculated the appropriate Green'sions ini)f{bﬁl still persist after the first 50 continued fraction
functions, new values fod;; and n;; can be calculated, [evels. In fact, these oscillations die off slowly, as,1and it
which we will denote ag\{" andn{". Inserting these into is critical to include them correctly. From Fig. 3 it is clear
the Hamiltonian and repeating the calculation of the Green’shat the first 50 levels provide enough information about the
functions leads to a new sét!” andn{? and so on. We decaying oscillation so that th#b;" can be extrapolated

repeat this iteration for all andj until quite easily.
Having considered a system where the interaction is zero,

[AM=D[—|AM] the next step is to consider systems where the interaction is
TN <0.001 (16 uniform and finite. For such systems the local particle den-
and 0.4
™= 0™ 3
W =<0.001. (17) S
Q@
SinceA;; andn;; can be complex, we need to also check f—ﬁ 02—
for convergence in their associated phases. We do this and &
find that convergence in the phase gradient of the complex E
parameters is much more rapid than the convergence in the 8
magnitude. o
|
Ill. NUMERICAL RESULTS 0.0 ] I ! !
-1.0 -0.5 0.0 0.5 1.0

A. Uniform systems

As a first test of the above methods let us examine a bulk E/W
superconductor, corresponding to an infinite 2D square lat- FIG. 2. The local particle density of states for a 2D tight binding
tice with either local or nonlocal attraction. These examplesattice with no interactions 4;=0). For this systent;;=1 for
will show how well such quantities as the local particle den-nearest neighbors only,=0 ande=0.
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2.5 from half filling in the case of the local interaction, and,
broadening the band in the case of the nonlocal interaction,
2.0 because of the local and nonlocal Hartree-Fock terms in the
HamiltonianU;;n;; andU;;n;;, respectively.
15 At this point one should note that in the case of a nonlocal
" interaction as well as having d-wave self-consistent solu-
R(b ) tion to the Bogoliubov—de Gennes equation, it is also pos-
1.0 sible to obtain an extendezwave solution, i.e.A;; =Aj; ,
Aij2=A”3, andAij4=Aij3. However we find that such solu-
0.5 tions are less stable than tkdewave solutions; this is only
true at or near half filling of the band.
0.0 I I I | To obtain the results shown in Fig. 4 we have again cal-
0 20 40 60 80 culated 50 levels of the recursion method exactly and then
n extrapolated for a further 2000 levels. This can easily be

done because the elementsagfandb,, vary in a predictable
FIG. 3. A plot of the real part ob;' for the same system that manner, as has already been seen for the case without inter-
was used to calculate the local particle density of states in Fig. 2.actions.

sity of states can be calculated, for different types of inter- B. Interfaces
action. In Fig. 4 we have plotted two different local particle Having considered systems where the interactions remain
densities of states for a local interactidd;; = —2.55;; 9 y

uniform throughout the structure the next step is to consider

systems that contain interaction strengths which vary in real

space. The most simple case one can conceive for this sce-
ario is an interface. We will simply model the interface by

N llowing the interaction to change in a steplike manner.
The dashed line in Fig. 4 clearly shows the energy gap af We will consider three separate situatiohS®, S-N,

the Fermi energy, characteristic ®vave superconductivity. d ; i

The van Hove peak in the density of states is also ver andS°-$°. In the normal region we Sh?” set; =0, hence
A )fhe order parameter in this region will be zefbut one

clearly resolved. The solid line in Fig. 4 shows the Iocalr§hou|d note that this does not imply tHfay is zerd. Before

particle density of states going to zero at the Fermi energy, "WWe look at the numerical results it is worthwhile considering

a manner that is typical of the local particle density of States\'/vhat one may expect to find. In the case of a local interaction

for a d-wave superconductor. In this case of the nonlocalthe results are well documented, i.e., the magnitude of the

interaction the order parameter changes sign as we rotate %{1 . :
L X - perconducting order parameter reaches a maximum at the
m/2 around a site, i.e., in reference to FigA} =—A;; , : -
1 I2 bulk value a few coherence lengths in the superconducting
Ajj,=—Ajj, andAy,=—Aj; . The way we have performed region away from the normal interface. In the case of the
the calculation is to keep the Fermi energies the same in theonlocal interaction we would also expect the amplitude of
two calculations but change, in the case of the local interacthe superconducting order parameter to reach a maximum
tion (dashed ling the density and, in the case of the nonlocalseveral coherence lengths away from the interface, but the
interaction (solid line), the width of the band self- problem of how to define the magnitude of the superconduct-
consistently. This has the effect of moving the system awayng order parameter now arises. Going back to Fig. 1 we can
see that for each siiethere are fived;;’s, so hence for each

(dashed lingand U;;=—2.5(1— §;;) for nearest neighbors
(solid ling). In each cas& =4 andt;; =1 (for nearest neigh-
borg and all other parameters were set to zero throughout th
lattice.

site we can define five order parameters per site. We can also
1) | combine these different order parameters on each site in the
Q0.4 (] following manner:
0o o
@ §ob |Afee ] =]ayl, (19
.0 Ao
j oo d) _
cc|_602— o |Af )|_%|Aijl_Aij2+Aij3_Aij4|: (20
© ’ I E : I —
§ A\ | Ajstnontocal]] = TIAG FA, A AL (2D
- ' so that each equation defines a different type of symmetry
0.0 I ' | f for that site. Since the systems we are interested in change in

the x direction only it is possible, when one is considering

the properties of that interface, to look along one line of sites

in the x-direction and note that for any othgicoordinate the
FIG. 4. Two plots of the local particle density of states for, a Properties of the system are the sameAse- A(x).

local interaction{ U;; 8; = — 2.5, U;; (1~ &;;) =0 (dashed ling and Having defined all the quantities of interest the next step

a nonlocal interactiofU;; 5;=0, U;;(1- &;) = — 2.5 (solid line)]. is to specify some of the systems of interest. The three sys-

All the other parameters are equal to those used to obtain Fig. 2.tems we are going to consider are as already pointed out

6 4 2 0
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TABLE Il. This table defines how the interactions vary in real finite near the interface. This is due to the fact that the order
space for the three different interfaces. All energies are given iparameter varies near the interface and herth?(x)
units where the nearest-neighbor hoppipg- 1. Also, u=0 every- #Ajg(x), making the values de[s(nonlocaI)](X)|_ This is em-

where andT=0.01. ] . . ]
phasized in Fig. &) whereAj3(x)—Ajl(x) is plotted, from

x<100 x=100 this graph one can see that the peakAff’(x)|, in Fig. 5b),
near the interface is due to the component inxtdrection.
Systesm Ui U;j(A-é) Eo Ui U;(1-4) E Figure 5c) shows thed-wave tos-wave superconductor
N=S 0 0 0 -25 0 4.0 interface. Again we can see that the extendeglave com-
'~ NS 0 —35 40 0 0 O ponent|Alsteniocall )| is nonzero at the interface, even
s'-s 0 —3.5 40 -25 0 4.0 though it is zero in the bulk on both sides, and that this leads

to sharp features in both the locawave andd-wave order
s od .. parameters near the interface.
N-S°, S™-N, andS"-S to set up these systems we used the” jaying seen how the profiles of the superconducting or-
parameters shown in Table II. _ der parameters are affected by the proximity of different ma-
Figures $a)-5(c) plot the threel main symmetry COmMpo- terjals, we now look at how the local particle density of
nents of the order parameteA!5(°®l(x)| (dashed ling  states changes as we move across the various interfaces. Fig-
|A(x)| (circles and [Alsonee(x)| (solid line) for the  yres 6, 7, and 8 are contour plots of the local particle densi-
three different geometriedl—S° [Fig. 5@)], S'~N [Fig.  ties of states for the three interfaces of interest. Figure 6
5(b)], and S~ S° [Fig. 5(c)]. The interface corresponds to shows a contour plot for thi-S® interface. Looking at this
x=100 on the figures. Figure(® shows, as expected, that plot one can see that as we move across the interface, at
the s-wave order parametejial5(°@(x)|, simply rises over  x=100, the superconducting gap opens up within a couple of
a coherence length to a maximum at the bulk superconducktomic sites. On the normal-metal side, for 100, the van
ing order parameter. Because the interaction is purely on-sitdove singularity in the center of the band can be clearly
in Fig. 5@ |A@(x)|=|Alstnonlecall(xy|=0 seen, but as we move into the superconducting region the
In Fig. 5(b) we see that for thel-wave to normal metal band edges are shifte@ue to the Hartree-Fock potential
interface| A (x)| also drops to zero at the interface. How- term) and the superconducting gap opens ugat0. In the
ever, unlike thes-wave case, it does not simply drop to zero superconducting region the van Hove singularity is shifted
smoothly but has a sharp peak structure right at the interfacaway fromE=0, as can also be seen in Fig(dashed ling
The origin of this peak is explained by looking at the ex-Due to the mismatch in the band edges we see oscillations in
tendeds-wave component|Atstnoniocallyy| [solid line in  the local particle density of states near the band edges; these
Fig. 5(b)]. We see that the extendeedwave gap function is are simply Friedel oscillatior&:3°

(a) (b)
- B L I
[
/
|A| 0o . |A| 0.2
'
! \
oo ; | 0.0 /\\ 1
80 100 120 80 100 120
X X
(©) (d)
I omm - 04
",I
|A| : |A| 0.2+
0.2+ !
t
. J\
0.0 -
0.0 *//i ! ‘ I
80 100 120 80 100 120
X X

FIG. 5. (a—(c) plot the profiles of different symmetries of the superconducting order pararflgt&¥"°"ecadl(x)| (solid line),
|Alstocabl(yxy| (dashed ling and |A(D(x)| (circles] for different interfaces(a), (b), and (c) are for N-S5, S-N and S*-S° interfaces
respectively. &) plots Ajl(x)—Ajs(x) for the N-SY interface. The parameters used to obtain the figures are given in Table II.
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-4 = -

g'
90 95 100 105 110 90 95 100 105 110
X X

FIG. 6. This is a contour plot of the local particle density of  FIG. 8. This is a contour plot of the local particle density of
states as a function of position, as one moves acrossl$ in- states as a function of position, as one moves acrosSthes®
terface. The steps in the contour plot are in units of 0.04, i.e., whiténterface. The steps in the contour plot are in units of 0.04, i.e.,
represent$\N(E)<0.04 and black represent$(E)>0.32. The pa- white representdN(E)<0.04 and black representd(E)>0.32.
rameters used to obtain this graph are given in Table II. The parameters used to obtain this graph are given in Table II.

Figure 7 shows a similar contour plot of the local particle match up, we see Friedel oscillations in the local particle
density of states for aB%-N interface. Again we can clearly density of states near the band edges.
see the gap in the superconducting region and the van Hove Finally, in Fig. 8 we have plotted the local particle density
singularity in the normal region. In this system the Hartree-of states as we move across 8feS°® interface. This plot has
Fock potential term leads to an increase in overall bangnany interesting features. The first to note is that, again due
width on thed-wave side. Again, since the band edges do noto the mismatch in the band edges, oscillations appear in the
local particle density of states. Second, fox 100 (Sy re-
gion) the density of states gradually goes to zerdEatO
(typical of d-wave superconductivitfsee Fig. 4 (solid
line)]), whereas for thé&® region the local particle density of
states drops to zero very sharply. The main points of interest
are what happens at the interface itself. In the plane of the
interface there are states in the gap, as bothdtheave and
s-wave order parameters are suppressec=At00 there are
two peaks in the density of states just above and below
E=0, which as we move further into th& region are
shifted to become the BCS density of states singularities just
above and below the superconducting gap. Note that the pa-
‘ ﬂ P rameters for the calculation in Fig. 8 were chosen so that
Qﬂw |A@|> |Alsecall] a5 would be the case for a YBCO-Pb

junction such as those used by Wollmeinal!

-4 v—’j IV. CONCLUSIONS
0
= In this paper we have shown how it is possible to perform

self-consistent calculations of the Bogoliubov—de Gennes
90 95 100 105 110 equation, using the recursion method. This method has the
x advantage of being an ordBr method and hence allows us
FIG. 7. This is a contour plot of the local particle density of tO tackle problems with a relatively small amount of compu-
states as a function of position, as one moves acrossSths tational effort. A key to obtaining accurate densities of states
interface. The steps in the contour plot are in units of 0.04, i.e.with relatively little computational effort is the extrapolation
white representdN(E)<0.04 and black represents(E)>0.32.  procedure we have used to terminate the matrix continued
The parameters used to obtain this graph are given in Table Il. fraction. Our method is fully self-consistent, including both
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self-consistency in the order parameter and in the normdhrities near the interfaces, as highlighted by the contour plot
Hartree-Fock potentials. As we have shown, these normah Fig. 8. We note that at the plane of the interface between
potentials make significant contributions by shifting or wid- thed ands-wave superconducting regions there are states in
ening the density of states in a spatially dependent mannethe gap.
Our method can deal with both local attractive interactions, In the future we hope to apply our method to more com-
corresponding to loca-wave superconductivity, or nonlocal plex interfacial phenomena in superconductors, such as junc-
interactions corresponding td-wave or extendeds-wave tions carrying supercurrer(e.g., to look for# junctions,
pairing. In our system we found that tdewave state is more superconducting twin boundaries, and grain-boundary junc-
stable. tions. Our methods can also be applied to many other prob-
As a first application of the method, we examined thredems in superconductivity, such as the structure of vortex
simple interfaces, corresponding to sswave S-N junction,  cores ins- or d-wave superconductors, the effects of impu-
ad-waveS-N junction, and ars-wave tod-waveS-Sjunc-  rities, and so on.
tion. The numerical results show a number of interesting

features, including a non-monotonic variation of the order ACKNOWLEDGMENTS
parameters near the interface, a surface layer of extended
s-wave pairing(even though it is not stable in the bulland This work was supported by the EPSRC under Grant No.
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