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Self-consistent interface properties ofd- and s-wave superconductors
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University of Bristol, H.H. Wills Physics Laboratory, Royal Fort, Tyndall Ave., Bristol BS8 1TL, United Kingdom

~Received 21 August 1997!

We develop a method to solve the Bogoliubov–de Gennes equation for superconductors self-consistently,
using the recursion method. The method allows the pairing interaction to be either local or nonlocal, corre-
sponding tos- andd-wave superconductivity, respectively. Using this method we examine the properties of
variousS-N and S-S interfaces. In particular, we calculate the spatially varying density of states and order
parameter for the following geometries:~i! s-wave superconductor to normal metal,~ii ! d-wave supercon-
ductor to normal metal,~iii ! d-wave superconductor tos-wave superconductor. We show that the density of
states at the interface has a complex structure including the effects of normal surface Friedel oscillations, the
spatially varying gap and Andeev states within the gap, and the subtle effects associated with the interplay of
the gap and the normal van Hove peaks in the density of states. In the case of bulkd-wave superconductors,
the surface leads to mixing of different order-parameter symmetries near the interface and substantial local
filling in of the gap.@S0163-1829~98!07314-7#
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I. INTRODUCTION

Interfaces in superconductors, especially hig
temperature superconductors, are of considerable interes
both fundamental physics and for applications. Many exp
ments have used both single electron tunneling and Jos
son effects as probes of the energy gap and order param
symmetry in the cuprates. For example Wollmanet al.1 and
Sun et al.2 constructed superconducting quantum interf
ence devices consisting of junctions between YBa2Cu3O7
~YBCO! and Pb, while Tsueiet al.3 constructed supercon
ducting rings consisting of YBCO thin films with two o
three grain-boundary junctions. Theoretical analysis of
periments such as these relies to a large extent on ma
scopic symmetry arguments and not on the microscopic
tails of the actual interfaces. However, in some cases
microscopic physics at the interface can be an important
tor in understanding the experimental results. For exampl
mixing of different order-parameter symmetries occurs at
interface~because the interface breaks the bulk tetragona
orthorhombic symmetry! the extent of such mixing can onl
be determined from microscopic calculations. Similarly, su
pression of the order parameter~either d-wave or s-wave!
near anS-N interface can lead to significant local density
states within the bulk energy gap, and this can complicate
analysis of single electron tunneling spectra.4. The micro-
scopic physics of surfaces and interfaces of high-T c super-
conductors are especially interesting because of the shor
herence length, and the probabled-wave gap function.

In the past few years there have been a number of mi
scopic calculations of surfaces and interfaces in superc
ducting systems with ad-wave order parameter. Most of th
theoretical results have been obtained using tunneling the
or Andreev’s approximation5–14 in which the tunneling bar-
rier and the order parameter are not found self-consisten
For tunnel junctions these approximations may be adequ
but we show below that self-consistency has significant
fects for interfaces with direct contact between the const
ents. Self-consistent properties of interfaces have previo
570163-1829/98/57~14!/8709~8!/$15.00
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been computed using the Eilenberger equations,15–20 which
are an approximation to the Bogoliubov–de Gennes eq
tion. These self-consistent solutions to the Eilenberger eq
tions have shown some interesting effects that have o
arisen when the order parameter is calculated in a s
consistent manner.

In this paper we aim to show how to calculate se
consistent properties of superconducting interfaces by
rectly solving the Bogoliubov–de Gennes equations. T
approach has the advantage that self-consistency can be
incorporated and also there is no need for the further
proximations of the Eilenberger method. Our approa
makes use of the recursion method21 to solve the
Bogoliubov–de Gennes equation on an arbitrary tig
binding lattice. Previously, the recursion method has b
used to examine the effects of disorder ins-wave22,23 and
d-wave24 superconductors, and to determine the core str
ture of vortices and explain the origin of de Haas–van A
phen oscillations in the superconducting state.25 In particular,
Litak, Miller, and Györffy23 have given a detailed descrip
tion of the application of the recursion method to local inte
actions, corresponding tos-wave superconductors. Here w
extend this to the case of nonlocal interactions necessar
obtain d-wave superconductivity and apply the method
various interfaces ofs and d-wave superconductors. Prev
ous fully self-consistent calculations of the Bogoliubov–
Gennes equation, with nonlocal interactions, have been
formed for very small systems, to examine the effect
single impurity scattering26 and the effect of roughness a
superconducting interfaces.27

The method of performing our self-consistent calculatio
will be described in Sec. II. Here we introduce th
Bogoliubov–de Gennes equation with a general interac
Ui j , and demonstrate how this general Hamiltonian can
solved self-consistently using the recursion method.21,23 A
necessary and nontrivial step in the calculation, as descr
below, involves finding the density of states accurately
extrapolation of the recursion method continued fraction.

In Sec. III we proceed to apply the method to seve
different problems. First, various test calculations are
8709 © 1998 The American Physical Society
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8710 57A. M. MARTIN AND JAMES F. ANNETT
scribed, including the local density of states for a unifo
system with no interactions, the local density of states fo
system with a local attractive interaction~local s-wave su-
perconducting order parameter!, and a system with a nonlo
cal attractive interaction. We show that for this nonlocal
teraction there are two possible solutions, these solut
being a nonlocals-wave superconducting order parame
~extendeds-wave! and a nonlocald-wave superconducting
order parameter.

Having tested the method on uniform systems we pres
our self-consistent solutions for the interface between
different materials. We will consider three different inte
faces. First, we consider a normal metal tos-wave supercon-
ductorN-Ss interface where the pairing interaction is zero
the normal region (N) and purely local in the superconduc
ing region (Ss). Then we will consider ad-wave to normal
metalSd-N, interface where again the interaction in the no
mal region is zero and there is a nonlocal attractive inter
tion in the superconducting region (Sd). Finally, a study of a
Sd-Ss interface will be described. These three calculatio
enable us to make a comparative study of how the lo
density of states and order parameter changes as a fun
of position across the different types of interface.

II. THEORY/MODEL

A. The Bogoliubov–de Gennes equation

The Bogoliubov–de Gennes equation on a tight-bind
square lattice has the form

(
j

H i j S uj
n

v j
nD 5EnS ui

n

v i
nD , ~1!

with

H i j 5S Hi j D i j

D i j
! 2Hi j

! D , ~2!

whereui
n andv i

n are the particle and hole amplitudes, on s
i , associated with an eigenenergyEn and whereD i j is the
~possibly nonlocal! pairing potential or gap function.

In the fully self-consistent Bogoliubov–de Gennes eq
tion the normal-state HamiltonianHi j is given by

Hi j 5~ t i j 1
1
2 Ui j ni j !~12d i j !

1~e i2m1 1
2 Uii nii !d i j , ~3!

wherem is the chemical potential,e i is the normal on-site
energy of sitei , andt i j is the hopping integral between sitei
and sitej . For the rest of this paper,t i j is nonzero for neares
neighbors only. The on-site and off-site interaction ter
1/2Uii nii and 1/2Ui j ni j are the Hartree-Fock potentials co
responding to the on-site interactionUi and the nonlocal in-
teractionUi j . The charge density entering the Hartree-Fo
termsni j is given by

ni j 5(
s

^C is
† C j s&52(

n
~ui

n!!uj
nf ~En!

1v i
n~v j

n!!@12 f ~En!#. ~4!
a
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Similarly the pairing potentials are defined as

D i j 52Ui j Fi j ~5!

where the anomalous density is

Fi j 5^C i↑C j↓&5(
n

ui
n~v j

n!!@12 f ~En!#

2~v i
n!!~uj

n! f ~En!. ~6!

In Eqs.~4! and~6! the sums only consider termsEn up to the
condensate chemical potential (m).

A solution to the above system of equations will be fu
self-consistent provided that both the normal (Ui j ni j ) and
anomalous (D i j ) potentials are determined consistently wi
the corresponding densitiesni j andFi j via Eqs.~3! and ~5!.
Note that the normal Hartree-Fock termsUi j ni j play an im-
portant role and cannot be neglected. For on-site interact
these terms correspond to position dependent shifts in
on-site energy, while for nonlocal interactions these ter
renormalize the hoppingt i j , leading to position-dependen
changes in the electronic bandwidth.

Figure 1 illustrates the geometry corresponding to t
system of equations. The tight-binding lattice has near
neighbor hopping interactions (t i j ), as well as a coupling
between particle and hole space, via a superconducting o
parameter (D i j ). If the interactions are purely on-site (Uii )
attractions then the pairing potential will be purely loc
(D i i ), corresponding to the dashed line in Fig. 1. On t
other hand, when the interaction is nonlocal (Ui j , iÞ j ) the
pairing potentialD i j will also be nonlocal, as illustrated b
the solid lines in Fig. 1. For computational convenience
limit both the hopping and nonlocal interaction to neare
neighbor distances. We also need to specify over what
ergy range the interaction has an effect, and as in BCS,28 we
will assume that it only acts over a small energy range c
tered on the Fermi energy,m6Ec .

FIG. 1. This is a schematic diagram of a tight-binding lattic
with particle and hole degrees of freedom,D i j couples particles on
site i to holes on sitej . The difference between local and nonloc
pairing is highlighted by the dashed~local pairing! and solid~non-
local pairing! lines.
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B. The recursion method

The method we have adopted to solve the above syste
equations is the recursion method.21 This method allows us
to calculate the electronic Green’s functions

Gaa8~ i , j ,E!5^ iau
1

E12H
u j a8&, ~7!

where the indicesi and j denote sites, whilea anda8 rep-
resent the particle or hole degree of freedom on each site
at

-
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denote particle degrees of freedom bya51 and hole de-
grees of freedom bya52. For exampleG12( i , j ,E) repre-
sents the Green’s function between the particle degree
freedom on sitei and the hole degree of freedom on sitej .

To compute the Green’s functions~7!, we can closely
follow the method described by Litak, Miller, and Gyo¨rffy23

for the special case of a local interaction (Ui j 5Uid i j ). Using
their method we can transform the Hamiltonian to a blo
tridiagonal form
E12H5S E12a0 2b1 0 0 0 0 0 •••

2b1
† E12a1 2b2 0 0 0 0 •••

0 2b2
†

� � 0 0 0 •••

0 0 � � � 0 0 •••

0 0 0 2bn
† E12an 2bn11 0 •••

A A A 0 � � � �

D , ~8!
the

r a
r

of

that
where an and bn are 232 matrices. Given this form for
^ iauE12Hu j a8& and expressing the Green’s function as

Gaa8~ i , j ,E!5^ iau~E12H!21u j a8&, ~9!

the Green’s functions above can be evaluated as a m
continued fraction so that

G~ i , j ,E!5„E12a02b1
†$E12a12b2

†@E12a22b3
†

3~E12a32 . . . !21b3#21b2%
21b1…

21,

~10!

where

G~ i , j ,E!5S Gaa~ i ,i ,E! Gaa8~ i , j ,E!

Ga8a~ j ,i ,E! Ga8a8~ j , j ,E!
D . ~11!

Within Eqs.~8! and~10! we have a formally exact repre
sentation of the Green’s functions. However in general b
the tridiagonal representation of the Hamiltonian, and
matrix continued fraction~8! will be infinite. In practice one
can only calculate a finite number of terms in the continu
fraction exactly. In the terminology of the recursion meth
it is necessary toterminatethe continued fraction.21,23,29–33

If we were to calculate up to and includingan andbn and
then simply set subsequent coefficients to zero, then
Green’s function would have 2n poles along the real axis
The density of states would then correspond to a set of 2n d
functions. Integrated quantities such as the densitiesni j and
Fi j could depend strongly onn, especially since only a few
of the 2n d functions would be within the relevant energ
range within the BCS cutoff,Ec . In order to obtain accurate
results it would be necessary to calculate a large numbe
exact levels, which would be expensive in terms of bo
computer time and memory.

As a more efficient alternative we choose to terminate
continued fraction using the extrapolation method, as u
rix

h
e

d

e

of
h

e
d

previously by Litak, Miller, and Gyo¨rffy.23 We calculate the
values foran and bn exactly up to the firstm coefficients
using the recursion method. Then, noting the fact that
elements of the matricesan and bn vary in a predictable
manner,23 we extrapolate the elements of the matrices fo
further k iterations, wherek is usually very much greate
thanm. This enables us to compute the various densities
states, and the charge densitiesni j and Fi j accurately with
relatively little computer time and memory.

In terms of the Green’s functionsGaa8( i , j ,E), the pairing
and normal Hartree-Fock potentialsD i j and 1/2Ui j ni j are
given by

D i j 5
1

2p
Ui j E

2Ec

Ec
@G12~ i , j ,E1ıh!2G12~ i , j ,E2ıh!#

3@12 f ~E!#dE ~12!

and

1

2
Ui j ni j 5

1

2p
Ui j E

2Ec

Ec
@G11~ i , j ,E1ıh!

2G11~ i , j ,E2ıh!# f ~E!dE, ~13!

whereh is a small positive number.
To obtain the above equations we have used the fact

S ui
n

v i
nD and S 2~v i

n!!

~ui
n!! D ~14!

are the eigenvectors of Eq.~1! with eigenvaluesEn and2En
respectively. Also note that the integrals in Eqs.~12! and
~13! are bounded by the cutoffEc , corresponding to the
energy dependent interaction

Ui j ~E!5H 2uUu for uE2mu<Ec

0 for uE2mu.Ec,
~15!
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TABLE I. This table shows which Green’s functions need to be calculated for systems with intera
which are local,Uii , nonlocal,Ui j (12d2 i j ), or both. The site labels correspond to the notation of Fig

Interaction Type G12( i ,i ,E) G16( i , j 1 ,E) G16( i , j 2 ,E) G16( i , j 3 ,E) G16( i , j 4 ,E)

Uii Y N N N N
Ui j (12d i j ) N Y Y Y Y
Uii 1Ui j (12d i j ) Y Y Y Y Y
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as in BCS theory. Our cutoffEc can correspond to the BC
cutoff \vD arising from retardation of the electron-phono
interaction, or any other energy scale cutoff for the inter
tion that may be applicable for high-temperature superc
ductors.

C. Achieving self-consistency

Using the above methods to calculateD i j and Ui j ni j we
need to achieve a fully self-consistent solution. First,
make use of any symmetries in the system in order to m
mize the number of calculations that are necessary. For
ample, on an infinite square lattice with no variation in a
of the potentials, only one independent site needs to be
culated since this site can be mapped onto all of the o
sites. Second, once we have decided which sites need
calculated self-consistently,D i j andni j can be calculated fo
those sites, remembering that on a square lattice each
will have four nearest neighbors. This implies that in gene
we will have to calculate nine different Green’s functions
order to calculateD i j andni j . This can be seen by consid
ering sitei in Fig. 1 and noting that we need to calculate t
Green’s functions shown in Table I, depending on whet
the interaction is purely local, purely nonlocal, or both loc
and nonlocal. Having calculated the appropriate Gree
functions, new values forD i j and ni j can be calculated
which we will denote asD i j

(1) andni j
(1) . Inserting these into

the Hamiltonian and repeating the calculation of the Gree
functions leads to a new setD i j

(2) and ni j
(2) and so on. We

repeat this iteration for alli and j until

UuD~n21!u2uD~n!u

uD~n!u
U<0.001 ~16!

and

Uun~n21!u2un~n!u

un~n!u
U<0.001. ~17!

SinceD i j andni j can be complex, we need to also che
for convergence in their associated phases. We do this
find that convergence in the phase gradient of the comp
parameters is much more rapid than the convergence in
magnitude.

III. NUMERICAL RESULTS

A. Uniform systems

As a first test of the above methods let us examine a b
superconductor, corresponding to an infinite 2D square
tice with either local or nonlocal attraction. These examp
will show how well such quantities as the local particle de
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sity of states can be calculated and how the extrapolatio
the elements of the matricesan andbn is performed.

The quantity of interest is the local particle density
states, which can be calculated from the following expr
sion:

Ni~E!5
1

2p
@G11~ i ,i ,E1ıh!2G11~ i ,i ,E2ıh!#.

~18!

Consider first a noninteracting system whereUi j 50,
m50, e i50, andt i j 51 for nearest neighbors and zero e
erywhere else. Figure 2 shows the local particle density
states for a calculation where the number of exact contin
fraction levels wasm550 and the elements ofan and bn
were extrapolated for 2000 more values. For this calculat
the convergence parameterh was chosen ash50.02. Figure
2 shows that using the extrapolation method the central lo
rithmic van Hove singularity and the sharp band edges
be resolved very well. Figure 3 shows the first 100 continu
fraction coefficientsRbn

11, where the first 50 are calculate
directly using the recursion method and the rest are the
trapolated values. It is clear from the figure that the osci
tions inRbn

11 still persist after the first 50 continued fractio
levels. In fact, these oscillations die off slowly, as 1/n, and it
is critical to include them correctly. From Fig. 3 it is clea
that the first 50 levels provide enough information about
decaying oscillation so that theRbn

11 can be extrapolated
quite easily.

Having considered a system where the interaction is z
the next step is to consider systems where the interactio
uniform and finite. For such systems the local particle d

FIG. 2. The local particle density of states for a 2D tight bindi
lattice with no interactions (Ui j 50). For this systemt i j 51 for
nearest neighbors only,m50 ande i50.



er
le

t

p
.
er
a
,
te
ca
e

d
t
a
a

a

d,
ion,
the

cal
-
os-

-

al-
hen
be

nter-

ain
der
eal
sce-
y

ng
ion
the
t the
ting
the
of
um
the
ct-

can

also
the

etry
e in
g

tes

tep
ys-
out

t
. 2

a

2

57 8713SELF-CONSISTENT INTERFACE PROPERTIES OFd- . . .
sity of states can be calculated, for different types of int
action. In Fig. 4 we have plotted two different local partic
densities of states for a local interactionUi j 522.5d i j
~dashed line! and Ui j 522.5(12d i j ) for nearest neighbors
~solid line!. In each caseEc54 andt i j 51 ~for nearest neigh-
bors! and all other parameters were set to zero throughout
lattice.

The dashed line in Fig. 4 clearly shows the energy ga
the Fermi energy, characteristic ofs-wave superconductivity
The van Hove peak in the density of states is also v
clearly resolved. The solid line in Fig. 4 shows the loc
particle density of states going to zero at the Fermi energy
a manner that is typical of the local particle density of sta
for a d-wave superconductor. In this case of the nonlo
interaction the order parameter changes sign as we rotat
p/2 around a site, i.e., in reference to Fig. 1D i j 1

52D i j 2
,

D i j 2
52D i j 3

andD i j 4
52D i j 3

. The way we have performe
the calculation is to keep the Fermi energies the same in
two calculations but change, in the case of the local inter
tion ~dashed line!, the density and, in the case of the nonloc
interaction ~solid line!, the width of the band self-
consistently. This has the effect of moving the system aw

FIG. 3. A plot of the real part ofbn
11 for the same system tha

was used to calculate the local particle density of states in Fig

FIG. 4. Two plots of the local particle density of states for,
local interaction@Ui j d i j 522.5, Ui j (12d i j )50 ~dashed line!# and
a nonlocal interaction@Ui j d i j 50, Ui j (12d i j )522.5 ~solid line!#.
All the other parameters are equal to those used to obtain Fig.
-
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from half filling in the case of the local interaction, an
broadening the band in the case of the nonlocal interact
because of the local and nonlocal Hartree-Fock terms in
HamiltonianUii nii andUi j ni j , respectively.

At this point one should note that in the case of a nonlo
interaction as well as having ad-wave self-consistent solu
tion to the Bogoliubov–de Gennes equation, it is also p
sible to obtain an extendeds-wave solution, i.e.,D i j 1

5D i j 2
,

D i j 2
5D i j 3

, andD i j 4
5D i j 3

. However we find that such solu

tions are less stable than thed-wave solutions; this is only
true at or near half filling of the band.

To obtain the results shown in Fig. 4 we have again c
culated 50 levels of the recursion method exactly and t
extrapolated for a further 2000 levels. This can easily
done because the elements ofan andbn vary in a predictable
manner, as has already been seen for the case without i
actions.

B. Interfaces

Having considered systems where the interactions rem
uniform throughout the structure the next step is to consi
systems that contain interaction strengths which vary in r
space. The most simple case one can conceive for this
nario is an interface. We will simply model the interface b
allowing the interaction to change in a steplike manner.

We will consider three separate situations,N-Ss, Sd-N,
andSd-Ss. In the normal region we shall setUi j 50, hence
the order parameter in this region will be zero,~but one
should note that this does not imply thatFi j is zero!. Before
we look at the numerical results it is worthwhile consideri
what one may expect to find. In the case of a local interact
the results are well documented, i.e., the magnitude of
superconducting order parameter reaches a maximum a
bulk value a few coherence lengths in the superconduc
region away from the normal interface. In the case of
nonlocal interaction we would also expect the amplitude
the superconducting order parameter to reach a maxim
several coherence lengths away from the interface, but
problem of how to define the magnitude of the supercondu
ing order parameter now arises. Going back to Fig. 1 we
see that for each sitei there are fiveD i j ’s, so hence for each
site we can define five order parameters per site. We can
combine these different order parameters on each site in
following manner:

uD i
@s~ local!#u5uD i u, ~19!

uD i
~d!u5 1

4 uD i j 1
2D i j 2

1D i j 3
2D i j 4

u, ~20!

uD i
@s~nonlocal!#u5 1

4 uD i j 1
1D i j 2

1D i j 3
1D i j 4

u, ~21!

so that each equation defines a different type of symm
for that site. Since the systems we are interested in chang
the x direction only it is possible, when one is considerin
the properties of that interface, to look along one line of si
in thex-direction and note that for any othery coordinate the
properties of the system are the same, soD i→D(x).

Having defined all the quantities of interest the next s
is to specify some of the systems of interest. The three s
tems we are going to consider are as already pointed

.

.
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8714 57A. M. MARTIN AND JAMES F. ANNETT
N-Ss, Sd-N, andSd-Ss; to set up these systems we used
parameters shown in Table II.

Figures 5~a!–5~c! plot the three main symmetry compo
nents of the order parameteruD@s(local)#(x)u ~dashed line!,
uD (d)(x)u ~circles! and uD@s(nonlocal)#(x)u ~solid line! for the
three different geometriesN2Ss @Fig. 5~a!#, Sd2N @Fig.
5~b!#, and Sd2Ss @Fig. 5~c!#. The interface corresponds t
x5100 on the figures. Figure 5~a! shows, as expected, tha
thes-wave order parameter,uD@s(local)#(x)u, simply rises over
a coherence length to a maximum at the bulk supercond
ing order parameter. Because the interaction is purely on
in Fig. 5~a! uD (d)(x)u5uD@s(nonlocal)#(x)u50

In Fig. 5~b! we see that for thed-wave to normal meta
interfaceuD (d)(x)u also drops to zero at the interface. How
ever, unlike thes-wave case, it does not simply drop to ze
smoothly but has a sharp peak structure right at the interf
The origin of this peak is explained by looking at the e
tendeds-wave component,uD@s(nonlocal)#(x)u @solid line in
Fig. 5~b!#. We see that the extendeds-wave gap function is

TABLE II. This table defines how the interactions vary in re
space for the three different interfaces. All energies are given
units where the nearest-neighbor hoppingt i j 51. Also,m50 every-
where andT50.01.

x,100 x>100

System Uii Ui j (12d i j ) Ec Uii Ui j (12d i j ) Ec

N2Ss 0 0 0 22.5 0 4.0
Sd2N 0 23.5 4.0 0 0 0
Sd2Ss 0 23.5 4.0 22.5 0 4.0
e

t-
ite

e.

finite near the interface. This is due to the fact that the or
parameter varies near the interface and henceD j 1

(x)

ÞD j 3
(x), making the values ofuD@s(nonlocal)#(x)u. This is em-

phasized in Fig. 5~d! whereD j 3
(x)2D j 1

(x) is plotted, from

this graph one can see that the peak inuD (d)(x)u, in Fig. 5~b!,
near the interface is due to the component in thex direction.

Figure 5~c! shows thed-wave tos-wave superconducto
interface. Again we can see that the extendeds-wave com-
ponent uD@s(nonlocal)#(x)u is nonzero at the interface, eve
though it is zero in the bulk on both sides, and that this le
to sharp features in both the locals-wave andd-wave order
parameters near the interface.

Having seen how the profiles of the superconducting
der parameters are affected by the proximity of different m
terials, we now look at how the local particle density
states changes as we move across the various interfaces
ures 6, 7, and 8 are contour plots of the local particle de
ties of states for the three interfaces of interest. Figur
shows a contour plot for theN-Ss interface. Looking at this
plot one can see that as we move across the interface
x5100, the superconducting gap opens up within a coupl
atomic sites. On the normal-metal side, forx,100, the van
Hove singularity in the center of the band can be clea
seen, but as we move into the superconducting region
band edges are shifted~due to the Hartree-Fock potentia
term! and the superconducting gap opens up atE50. In the
superconducting region the van Hove singularity is shif
away fromE50, as can also be seen in Fig. 3~dashed line!.
Due to the mismatch in the band edges we see oscillation
the local particle density of states near the band edges; t
are simply Friedel oscillations.34,35

in
FIG. 5. ~a!–~c! plot the profiles of different symmetries of the superconducting order parameter@ uD@s(nonlocal)#(x)u ~solid line!,
uD@s~local!#(x)u ~dashed line! and uD (d)(x)u ~circles!# for different interfaces.~a!, ~b!, and ~c! are for N-Ss, Sd-N and Sd-Ss interfaces
respectively. 5~d! plots D j 1

(x)2D j 3
(x) for the N-Sd interface. The parameters used to obtain the figures are given in Table II.
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Figure 7 shows a similar contour plot of the local partic
density of states for anSd-N interface. Again we can clearly
see the gap in the superconducting region and the van H
singularity in the normal region. In this system the Hartre
Fock potential term leads to an increase in overall ba
width on thed-wave side. Again, since the band edges do

FIG. 6. This is a contour plot of the local particle density
states as a function of position, as one moves across theN-Ss in-
terface. The steps in the contour plot are in units of 0.04, i.e., w
representsN(E),0.04 and black representsN(E).0.32. The pa-
rameters used to obtain this graph are given in Table II.

FIG. 7. This is a contour plot of the local particle density
states as a function of position, as one moves across theSd-N
interface. The steps in the contour plot are in units of 0.04,
white representsN(E),0.04 and black representsN(E).0.32.
The parameters used to obtain this graph are given in Table II
ve
-
d
t

match up, we see Friedel oscillations in the local parti
density of states near the band edges.

Finally, in Fig. 8 we have plotted the local particle dens
of states as we move across theSd-Ss interface. This plot has
many interesting features. The first to note is that, again
to the mismatch in the band edges, oscillations appear in
local particle density of states. Second, forx,100 (Sd re-
gion! the density of states gradually goes to zero atE50
~typical of d-wave superconductivity@see Fig. 4 ~solid
line!#!, whereas for theSs region the local particle density o
states drops to zero very sharply. The main points of inte
are what happens at the interface itself. In the plane of
interface there are states in the gap, as both thed-wave and
s-wave order parameters are suppressed. Atx5100 there are
two peaks in the density of states just above and be
E50, which as we move further into theSs region are
shifted to become the BCS density of states singularities
above and below the superconducting gap. Note that the
rameters for the calculation in Fig. 8 were chosen so t
uD (d)u@ uD@s(local)#u as would be the case for a YBCO-P
junction such as those used by Wollmanet al.1

IV. CONCLUSIONS

In this paper we have shown how it is possible to perfo
self-consistent calculations of the Bogoliubov–de Gen
equation, using the recursion method. This method has
advantage of being an orderN method and hence allows u
to tackle problems with a relatively small amount of comp
tational effort. A key to obtaining accurate densities of sta
with relatively little computational effort is the extrapolatio
procedure we have used to terminate the matrix contin
fraction. Our method is fully self-consistent, including bo

te

.,

FIG. 8. This is a contour plot of the local particle density
states as a function of position, as one moves across theSd2Ss

interface. The steps in the contour plot are in units of 0.04, i
white representsN(E),0.04 and black representsN(E).0.32.
The parameters used to obtain this graph are given in Table II
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self-consistency in the order parameter and in the nor
Hartree-Fock potentials. As we have shown, these nor
potentials make significant contributions by shifting or wi
ening the density of states in a spatially dependent man
Our method can deal with both local attractive interactio
corresponding to locals-wave superconductivity, or nonloca
interactions corresponding tod-wave or extendeds-wave
pairing. In our system we found that thed-wave state is more
stable.

As a first application of the method, we examined thr
simple interfaces, corresponding to ans-waveS-N junction,
a d-waveS-N junction, and ans-wave tod-waveS-S junc-
tion. The numerical results show a number of interest
features, including a non-monotonic variation of the ord
parameters near the interface, a surface layer of exten
s-wave pairing~even though it is not stable in the bulk!, and
subtle effects of the self-consistent Hartree-Fock terms in
Bogoliubov de Gennes Hamiltonian leading to Friedel os
lations and spatially dependent shifts in the van Hove sin
g,

s

K

Y.

B

al
al

er.
,

e

g
r
ed

e
l-
u-

larities near the interfaces, as highlighted by the contour p
in Fig. 8. We note that at the plane of the interface betwe
thed ands-wave superconducting regions there are state
the gap.

In the future we hope to apply our method to more co
plex interfacial phenomena in superconductors, such as ju
tions carrying supercurrent~e.g., to look forp junctions!,
superconducting twin boundaries, and grain-boundary ju
tions. Our methods can also be applied to many other pr
lems in superconductivity, such as the structure of vor
cores ins- or d-wave superconductors, the effects of imp
rities, and so on.
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