20 research outputs found

    Uniform growth trends among central Asian low and high elevation juniper tree sites. Trees

    Get PDF
    Abstract We present an analysis of 28 juniper tree-ring sites sampled over the last decades by several research teams in the Tien Shan and Karakorum mountains of western central Asia. Ring-width chronologies were developed on a site-by-site basis, using a detrending technique designed to retain low-frequency climate variations. Site chronologies were grouped according to their distance from the upper timberline in the Tien Shan ( ∼ 3,400 m a.s.l.) and Karakorum ( ∼ 4,000 m), and low-and high-elevation composite chronologies combining data from both mountain systems developed. Comparison of these elevational subsets revealed significant coherence (r = 0.72) over the 1438-1995 common period, which is inconsistent with the concept of differing environmental signals captured in tree-ring data along elevational gradients. It is hypothesized that the uniform growth behavior in central Asian juniper trees has been forced by solar radiation variations controlled via cloud cover changes, but verification of this assumption requires further fieldwork. The high-elevation composite chronology was further compared with existing temperature reconstructions from the Karakorum and Tien Shan, and long-term trend differences discussed. We concluded that the extent of warmth during medieval times cannot be precisely estimated based on ring-width data currently available. Communicated by M. Adam

    The unknown third – Hydrogen isotopes in tree-ring cellulose across Europe

    Get PDF
    This is the first Europe-wide comprehensive assessment of the climatological and physiological information recorded by hydrogen isotope ratios in tree-ring cellulose (δ2Hc) based on a unique collection of annually resolved 100-year tree-ring records of two genera (Pinus and Quercus) from 17 sites (36°N to 68°N). We observed that the high-frequency climate signals in the δ2Hc chronologies were weaker than those recorded in carbon (δ13Cc) and oxygen isotope signals (δ18Oc) but similar to the tree-ring width ones (TRW). The δ2Hc climate signal strength varied across the continent and was stronger and more consistent for Pinus than for Quercus. For both genera, years with extremely dry summer conditions caused a significant 2H-enrichment in tree-ring cellulose. The δ2Hc inter-annual variability was strongly site-specific, as a result of the imprinting of climate and hydrology, but also physiological mechanisms and tree growth. To differentiate between environmental and physiological signals in δ2Hc, we investigated its relationships with δ18Oc and TRW. We found significant negative relationships between δ2Hc and TRW (7 sites), and positive ones between δ2Hc and δ18Oc (10 sites). The strength of these relationships was nonlinearly related to temperature and precipitation. Mechanistic δ2Hc models performed well for both genera at continental scale simulating average values, but they failed on capturing year-to-year δ2Hc variations. Our results suggest that the information recorded by δ2Hc is significantly different from that of δ18Oc, and has a stronger physiological component independent from climate, possibly related to the use of carbohydrate reserves for growth. Advancements in the understanding of 2H-fractionations and their relationships with climate, physiology, and species-specific traits are needed to improve the modelling and interpretation accuracy of δ2Hc. Such advancements could lead to new insights into trees' carbon allocation mechanisms, and responses to abiotic and biotic stress conditions

    Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE

    Get PDF
    This study was funded by the WSL-internal COSMIC project (5233.00148.001.01), the ETHZ (Laboratory of Ion Beam Physics), the Swiss National Science Foundation (SNF Grant 200021L_157187/1), and as the Czech Republic Grant Agency project no. 17-22102s.Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770–780 and 990–1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.Publisher PDFPeer reviewe

    Investigating the influence of sulphur dioxide (SO2) on the stable isotope ratios (δ13C and δ18O) of tree rings

    No full text
    This study reports the influence of a 20th century pollution signal recorded in the δ13C and δ18O of absolutely dated tree rings from Quercus robur and Pinus sylvestris from southern England. We identify a correspondence between the inter-relationship and climate sensitivity of stable isotope series that appears to be linked to recent trends in local SO2 emissions. This effect is most clearly exhibited in the broadleaved trees studied but is also observed in the δ13C values of the (less polluted) pine site at Windsor. The SO2 induced stomatal closure leads to a maximum increase of 2.5‰ in the isotope values (δ13C). The combined physiological response to high pollution levels is less in δ18O than δ13C. The SO2 signal also seems to be present as a period of reduced growth in the two ring-width chronologies. Direct, quantitative correction for the SO2 effect represents a significant challenge owing to the nature of the records and likely local plant response to environmental pollution. Whilst it appears that this signal is both limited to the late industrial period and demonstrates a recovery in line with improvements in air quality, the role of atmospheric pollution during the calibration period should not be underestimated and adequate consideration needs to be taken when calibrating biological environmental proxies in order to avoid development of biased reconstructions

    Uniform growth trends among central Asian low and high elevation juniper tree sites. Trees

    No full text
    Abstract We present an analysis of 28 juniper tree-ring sites sampled over the last decades by several research teams in the Tien Shan and Karakorum mountains of western central Asia. Ring-width chronologies were developed on a site-by-site basis, using a detrending technique designed to retain low-frequency climate variations. Site chronologies were grouped according to their distance from the upper timberline in the Tien Shan ( ∼ 3,400 m a.s.l.) and Karakorum ( ∼ 4,000 m), and low-and high-elevation composite chronologies combining data from both mountain systems developed. Comparison of these elevational subsets revealed significant coherence (r = 0.72) over the 1438-1995 common period, which is inconsistent with the concept of differing environmental signals captured in tree-ring data along elevational gradients. It is hypothesized that the uniform growth behavior in central Asian juniper trees has been forced by solar radiation variations controlled via cloud cover changes, but verification of this assumption requires further fieldwork. The high-elevation composite chronology was further compared with existing temperature reconstructions from the Karakorum and Tien Shan, and long-term trend differences discussed. We concluded that the extent of warmth during medieval times cannot be precisely estimated based on ring-width data currently available. Communicated by M. Adam

    The oxygen isotope enrichment of leaf-exported assimilates - does it always reflect lamina leaf water enrichment?

    No full text
    The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant-climate interaction, but there is a lack of information on the transfer of the isotope signa

    Ranking of tree-ring based temperature reconstructions of the past millennium

    No full text
    Tree-ring chronologies are widely used to reconstruct high-to low-frequency variations in growing season temperatures over centuries to millennia. The relevance of these timeseries in large-scale climate reconstructions is often determined by the strength of their correlation against instrumental temperature data. However, this single criterion ignores several important quantitative and qualitative characteristics of tree-ring chronologies. Those characteristics are (i) data homogeneity, (ii) sample replication, (iii) growth coherence, (iv) chronology development, and (v) climate signal including the correlation with instrumental data. Based on these 5 characteristics, a reconstruction-scoring scheme is proposed and applied to 39 published, millennial-length temperature reconstructions from Asia, Europe, North America, and the Southern Hemisphere. Results reveal no reconstruction scores highest in every category and each has their own strengths and weaknesses. Reconstructions that perform better overall include N-Scan and Finland from Europe, E-Canada from North America, Yamal and Dzhelo from Asia. Reconstructions performing less well include W-Himalaya and Karakorum from Asia, Tatra and S-Finland from Europe, and Great Basin from North America. By providing a comprehensive set of criteria to evaluate tree-ring chronologies we hope to improve the development of large-scale temperature reconstructions spanning the past millennium. All reconstructions and their corresponding scores are provided at www.blogs.uni-mainz.de/fb09climatology

    Ranking of tree-ring based temperature reconstructions of the past millennium

    Get PDF
    Tree-ring chronologies are widely used to reconstruct high-to low-frequency variations in growing season temperatures over centuries to millennia. The relevance of these timeseries in large-scale climate reconstructions is often determined by the strength of their correlation against instrumental temperature data. However, this single criterion ignores several important quantitative and qualitative characteristics of tree-ring chronologies. Those characteristics are (i) data homogeneity, (ii) sample replication, (iii) growth coherence, (iv) chronology development, and (v) climate signal including the correlation with instrumental data. Based on these 5 characteristics, a reconstruction-scoring scheme is proposed and applied to 39 published, millennial-length temperature reconstructions from Asia, Europe, North America, and the Southern Hemisphere. Results reveal no reconstruction scores highest in every category and each has their own strengths and weaknesses. Reconstructions that perform better overall include N-Scan and Finland from Europe, E-Canada from North America, Yamal and Dzhelo from Asia. Reconstructions performing less well include W-Himalaya and Karakorum from Asia, Tatra and S-Finland from Europe, and Great Basin from North America. By providing a comprehensive set of criteria to evaluate tree-ring chronologies we hope to improve the development of large-scale temperature reconstructions spanning the past millennium. All reconstructions and their corresponding scores are provided at www.blogs.uni-mainz.de/fb09climatology. (C) 2016 Elsevier Ltd. All rights reserved.German Science Foundation [161/9-1]; National Natural Science Foundation of China [41325008]; [RNF 15-14-30011]Available online 10 June 2016. 24 month embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore