166 research outputs found

    The interactions between municipal socioeconomic status and age on hip fracture risk

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00198-014-2869-0SUMMARY: Age modifies the effect of area-level socioeconomic status (SES) in the risk of fragility hip fractures (HF). For older individuals, the risk of HF increases as SES increases. For younger individuals, risk of HF increases as SES decreases. Our study may help decision-makers to better direct the implementation of political decisions. INTRODUCTION: The effect of socioeconomic status (SES) on hip fracture (HF) incidence remains unclear. The objective of this study is to evaluate the association between HF incidence and municipality-level SES as well as interactions between age and SES. METHODS: From the Portuguese Hospital Discharge Database, we selected hospitalizations (2000-2010) of patients aged 50+, with HF diagnosis (codes 820.x, ICD9-CM), caused by traumas of low/moderate energy, excluding bone cancer cases and readmissions for aftercare. Municipalities were classified according to SES (deprived to affluent) using 2001 Census data. A spatial Bayesian hierarchical regression model (controlling for data heterogeneity and spatial autocorrelation), using the Poisson distribution, was used to quantify the relative risk (RR) of HF, 95% credible interval (95%CrI), and analyze the interaction between age and SES after adjusting for rural conditions. RESULTS: There were 96,905 HF, 77.3% of which were on women who, on average, were older than men (mean age 81.2±8.5 vs 78.2±10.1 years) at admission (p<0.001). In women, there was a lower risk associated with better SES: RR=0.83 (95%CrI 0.65-1.00) for affluent versus deprived. There was an inverse association between SES and HF incidence rate in the youngest and a direct association in the oldest, for both sexes, but significant only between deprived and affluent in older ages (≥75 years). CONCLUSIONS: Interaction between SES and age may be due to inequalities in lifestyles, access to health systems, and preventive actions. These results may help decision-makers to better understand the epidemiology of hip fractures and to better direct the available funding.Programa Operacional Factores de Competitividade (COMPETE)Fundação para a Ciência e a Tecnologia (FCT

    Human Mesenchymal Stromal Cells Decrease Mortality Following Intestinal Ischemia and Reperfusion Injury

    Get PDF
    Background Cellular therapy is a novel treatment option for intestinal ischemia. Bone marrow–derived mesenchymal stromal cells (BMSCs) have previously been shown to abate the damage caused by intestinal ischemia/reperfusion (I/R) injury. We therefore hypothesized that (1) human BMSCs (hBMSCs) would produce more beneficial growth factors and lower levels of proinflammatory mediators compared to differentiated cells, (2) direct application of hBMSCs to ischemic intestine would decrease mortality after injury, and (3) decreased mortality would be associated with an altered intestinal and hepatic inflammatory response. Methods Adult hBMSCs and keratinocytes were cultured on polystyrene flasks. For in vitro experiments, cells were exposed to tumor necrosis factor, lipopolysaccharides, or 2% oxygen for 24 h. Supernatants were then analyzed for growth factors and chemokines by multiplex assay. For in vivo experiments, 8- to 12-wk-old male C57Bl6J mice were anesthetized and underwent a midline laparotomy. Experimental groups were exposed to temporary superior mesenteric artery occlusion for 60 min. Immediately after ischemia, 2 × 106 hBMSCs or keratinocytes in phosphate-buffered saline were placed into the peritoneal cavity. Animals were then closed and allowed to recover for 6 h (molecular/histologic analysis) or 7 d (survival analysis). After 6-h reperfusion, animals were euthanized. Intestines and livers were harvested and analyzed for inflammatory chemokines, growth factors, and histologic changes. Results hBMSCs expressed higher levels of human interleukin (IL) 6, IL-8, vascular endothelial growth factor (VEGF), and epidermal growth factor and lower levels of IL-1, IL-3, IL-7, and granulocyte-monocyte colony-stimulating factor after stimulation. In vivo, I/R resulted in significant mortality (70% mortality), whereas application of hBMSCs after ischemia decreased mortality to 10% in a dose-dependent fashion (P = 0.004). Keratinocyte therapy offered no improvements in mortality above I/R. Histologic profiles were equivalent between ischemic groups, regardless of the application of hBMSCs or keratinocytes. Cellular therapy yielded significantly decreased murine intestinal levels of soluble activin receptor-like kinase 1, betacellulin, and endothelin, whereas increasing levels of eotaxin, monokine induced by gamma interferon (MIG), monocyte chemoattractant protein 1, IL-6, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein 10 (IP-10) from ischemia were appreciated. hBMSC therapy yielded significantly higher expression of murine intestinal VEGF and lower levels of intestinal MIG compared to keratinocyte therapy. Application of hBMSCs after ischemia yielded significantly lower murine levels of hepatic MIG, IP-10, and G-CSF compared to keratinocyte therapy. Conclusions Human BMSCs produce multiple beneficial growth factors. Direct application of hBMSCs to the peritoneal cavity after intestinal I/R decreased mortality by 60%. Improved outcomes with hBMSC therapy were not associated with improved histologic profiles in this model. hBMSC therapy was associated with higher VEGF in intestines and lower levels of proinflammtory MIG, IP-10, and G-CSF in liver tissue after ischemia, suggesting that reperfusion with hBMSC therapy may alter survival by modulating the systemic inflammatory response to ischemia

    The Roles of Extrinsic and Intrinsic Factors in the Freshwater Life-History Dynamics of a Migratory Salmonid

    Get PDF
    Key life-cycle transitions, such as metamorphosis or migration, can be altered by a variety of external factors, such as climate variation, strong species interactions, and management intervention, or modulated by density dependence. Given that these life-history transitions can influence population dynamics, understanding the simultaneous effects of intrinsic and extrinsic controls on life-history expression is particularly relevant for species of management or conservation importance. Here, we examined how life histories of steelhead (Oncorhynchus mykiss) are affected by weather, pink salmon abundance (Oncorhynchus gorbuscha), experimental nutrient addition, and density-dependent processes. We tested for impacts on the size of steelhead smolts (juveniles migrating to the sea), as well as their age and abundance across four decades in the Keogh River, British Columbia, Canada. Larger steelhead smolts were associated with warmer years and artificial nutrient addition. In addition, higher pink salmon abundance and artificial nutrient addition correlated with juvenile steelhead migrating at younger ages. While density dependence appeared to be the primary factor regulating the abundance of steelhead smolts, nutrient addition and temperature were positively and negatively associated with smolt production, respectively, prior to 1991, and pink salmon spawning abundance was positively associated with smolt production after 1990. Thus, this study provides evidence that the temporal dynamics of one species of salmon is linked to the juvenile life history of co-occurring steelhead. A complex interplay of species interactions, nutrient subsidies, density dependence, and climatic variation can control the life-history expression of species with complex life cycles

    Probing Molecular Shape. 1. Conformational Studies of 5-Hydroxyhexahydropyrimidine and Related Compounds

    Get PDF
    Understanding the factors that determine molecular shape enables scientists to begin to understand and tailor molecular properties and reactivity. Many biomolecules and bioactive compounds contain aliphatic heterocyclic rings whose conformations play a major role in their biological activity. The interplay of a number of factors, both steric and electronic, is examined for 5-hydroxyhexahydropyrimidine (1) and related compounds with use of spectroscopy and molecular modeling

    Probing Molecular Shape. 1. Conformational Studies of 5-Hydroxyhexahydropyrimidine and Related Compounds

    Get PDF
    Understanding the factors that determine molecular shape enables scientists to begin to understand and tailor molecular properties and reactivity. Many biomolecules and bioactive compounds contain aliphatic heterocyclic rings whose conformations play a major role in their biological activity. The interplay of a number of factors, both steric and electronic, is examined for 5-hydroxyhexahydropyrimidine (1) and related compounds with use of spectroscopy and molecular modeling

    A statistical modeling framework for characterising uncertainty in large datasets: Application to ocean colour

    Get PDF
    Uncertainty estimation is crucial to establishing confidence in any data analysis, and this is especially true for Essential Climate Variables, including ocean colour. Methods for deriving uncertainty vary greatly across data types, so a generic statistics-based approach applicable to multiple data types is an advantage to simplify the use and understanding of uncertainty data. Progress towards rigorous uncertainty analysis of ocean colour has been slow, in part because of the complexity of ocean colour processing. Here, we present a general approach to uncertainty characterisation, using a database of satellite-in situ matchups to generate a statistical model of satellite uncertainty as a function of its contributing variables. With an example NASA MODIS-Aqua chlorophyll-a matchups database mostly covering the north Atlantic, we demonstrate a model that explains 67% of the squared error in log(chlorophyll-a) as a potentially correctable bias, with the remaining uncertainty being characterised as standard deviation and standard error at each pixel. The method is quite general, depending only on the existence of a suitable database of matchups or reference values, and can be applied to other sensors and data types such as other satellite observed Essential Climate Variables, empirical algorithms derived from in situ data, or even model data

    CO<sub>2</sub> drawdown following the middle Miocene expansion of the Antarctic Ice Sheet

    Get PDF
    The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 Myr (million years) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the “greenhouse” of the early Eocene to the “icehouse” of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive δ13C excursion known as carbon maximum 6 (“CM6”), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the δ13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.</p

    Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae

    Get PDF
    Elemental uptake and export of the cell are tightly regulated thereby maintaining the ionomic homeostasis. This equilibrium can be disrupted upon exposure to exogenous reactive oxygen species (ROS), leading to reduction or elevation of the intracellular metal ions. In this study, the ionomic composition in the eukaryotic model organism Saccharomyces cerevisiae was profiled using the inductively-coupled plasma optical emission spectrometer (ICP-OES) following the treatment with individual ROS, including hydrogen peroxide, cumen hydroperoxide, linoleic acid hydroperoxide (LAH), the superoxide-generating agent menadione, the thiol-oxidising agent diamide [diazine-dicarboxylic acid-bis(dimethylamide)], dimedone and peroxynitrite. The findings demonstrated that different ROS resulted in distinct changes in cellular metal ions. Aluminium (Al3+) level rose up to 50-fold after the diamide treatment. Cellular potassium (K+) in LAH-treated cells was 26-fold less compared to the non-treated controls. The diamide-induced Al3+ accumulation was further validated by the enhanced Al3+ uptake along the time course and diamide doses. Pre-incubation of yeast with individual elements including iron, copper, manganese and magnesium failed to block diamide-induced Al3+ uptake, suggesting Al3+-specific transporters could be involved in Al3+ uptake. Furthermore, LAH-induced potassium depletion was validated by a rescue experiment in which addition of potassium increased yeast growth in LAH-containing media by 26% compared to LAH alone. Taken together, the data, for the first time, demonstrated the linkage between ionomic profiles and individual oxidative conditions

    Ultrafast measurements of mode-specific deformation potentials of Bi2_2Te3_3 and Bi2_2Se3_3

    Full text link
    Quantifying electron-phonon interactions for the surface states of topological materials can provide key insights into surface-state transport, topological superconductivity, and potentially how to manipulate the surface state using a structural degree of freedom. We perform time-resolved x-ray diffraction (XRD) and angle-resolved photoemission (ARPES) measurements on Bi2_2Te3_3 and Bi2_2Se3_3, following the excitation of coherent A1g_{1g} optical phonons. We extract and compare the deformation potentials coupling the surface electronic states to local A1g_{1g}-like displacements in these two materials using the experimentally determined atomic displacements from XRD and electron band shifts from ARPES.We find the coupling in Bi2_2Te3_3 and Bi2_2Se3_3 to be similar and in general in agreement with expectations from density functional theory. We establish a methodology that quantifies the mode-specific electron-phonon coupling experimentally, allowing detailed comparison to theory. Our results shed light on fundamental processes in topological insulators involving electron-phonon coupling
    • …
    corecore