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ABSTRACT 

Background: Cellular therapy is a novel treatment option for intestinal ischemia.  Bone Marrow 

Derived Mesenchymal Stromal Cells (BMSCs) have previously been shown to abate the 

damage caused by intestinal ischemia/reperfusion injury (I/R).   We therefore hypothesized that 

1) human BMSCs (hBMSCs) would produce more beneficial growth factors and lower levels of 

proinflammatory mediators compared to differentiated cells, 2) direct application of hBMSCs to 

ischemic intestine would decrease mortality following injury, and 3) decreased mortality would 

be associated with an altered intestinal and hepatic inflammatory response.  

Methods: Adult hBMSCs and keratinocytes were cultured on polystyrene flasks.  For in vitro 

experiments, cells were exposed to TNF, LPS, or 2% oxygen for twenty-four hours.  

Supernatants were then analyzed for growth factors and chemokines by multiplex assay.  For in 

vivo experiments, eight to twelve week old male C57Bl6J mice were anesthetized and 

underwent a midline laparotomy.  Experimental groups were exposed to temporary superior 

mesenteric artery occlusion for 60 minutes.  Immediately following ischemia, 2 x 106 hBMSCs or 

keratinocytes in PBS were placed into the peritoneal cavity.  Animals were then closed and 

allowed to recover for 6 hours (molecular / histological analysis) or 7 days (survival analysis).  

Following 6 hour reperfusion, animals were euthanized.  Intestines and livers were harvested 

and analyzed for inflammatory chemokines, growth factors, and histological changes.   

Results: hBMSCs expressed higher levels of human IL-6, IL-8, VEGF, and EGF, and lower 

levels of IL1, IL3, IL7, and GMCSF following stimulation.  In vivo, I/R resulted in significant 

mortality (70% mortality), while application of hBMSCs following ischemia decreased mortality to 

10% in a dose dependent fashion (p=0.004).  Keratinocyte therapy offered no improvements in 

mortality above I/R.  Histological profiles were equivalent between ischemic groups, regardless 

of application of hBMSCs or keratinocytes.  Cellular therapy yielded significantly decreased 



murine intestinal levels of sALK-1, betacellulin and endothelin, while increasing levels of 

eotaxin, MIG, MCP-1, IL-6, GCSF and IP-10 from ischemia were appreciated.  hBMSC therapy 

yielded significantly higher expression of murine intestinal VEGF and lower levels of intestinal 

MIG compared to keratinocyte therapy.  Application of hBMSCs following ischemia yielded 

significantly lower murine levels of hepatic MIG, IP-10, and GCSF compared to keratinocyte 

therapy. 

Conclusion: Human BMSCs produce multiple beneficial growth factors.  Direct application of 

hBMSCs to the peritoneal cavity following intestinal I/R decreased mortality by sixty percent.  

Improved outcomes with hBMSC therapy were not associated with improved histological profiles 

in this model.  hBMSC therapy was associated with higher VEGF in intestines, and lower levels 

of proinflammtory MIG, IP-10, and GCSF in liver tissue following ischemia, suggesting that 

reperfusion with hBMSC therapy may alter survival by modulating the systemic inflammatory 

response to ischemia. 

INTRODUCTION 

Intestinal ischemia and necrosis affect multiple patient populations of varying ages and 

comorbidities.  Acute mesenteric ischemia (AMI) is prevalent in the elderly population and those 

who undergo cardiac bypass surgery.  AMI affects nearly 5000 patients annually, with many 

requiring open or endovascular surgical intervention to lyse the clot and salvage the ischemic 

intestine.  The mortality rate for AMI can be as high as 40% for those who progress to surgery 

(1).  Necrotizing enterocolitis and volvulus are two forms of intestinal ischemia that can affect 

the neonatal population.  Necrotizing enterocolitis, which has multiple factors contributing to its 

etiology, affects the very low birth weight premature population.  The mortality for the most 

severe cases of NEC can be quite high (2).  Midgut volvulus associated with malrotation occurs 

much less frequently than NEC, but carries a high mortality when a majority of the bowel is 



involved (3).  In either case, if patients survive these ischemic episodes, they often require 

prolonged hospitalization and long term parenteral nutrition.   

Significant elevations in serum chemokines, including monocyte chemoattractant protein 

1 (MCP-1), eotaxin, and chemokine ligand 10 (IP-10) have been noted following intestinal 

ischemia, and are thought to be responsible for leukocyte mobilization to the areas of injured 

bowel (4,5).  These cells are responsible for injury repair, but also promote inflammation, which 

may be detrimental to the host.  For example, lymphocyte influx is thought to be detrimental to 

recovery, as lymphocyte depleted animals had better outcomes following intestinal ischemia (6).  

However, other leukocyte classes may actually promote intestinal recovery by digesting dead 

cells and repairing the extracellular matrix (7).  Additionally, markers of neovascularization have 

been elevated after intestinal ischemia (8,9).  Neovasculogenesis increases intestinal capillary 

density to restore oxygen balance and nutrient homeostasis to injured bowel. 

In this regard, stem cells have become an increasingly plausible mode of therapy for 

ischemic tissues, mainly due to their immunogenic and angiogenic reparative properties (10-12).  

Bone marrow mesenchymal stromal cells (BMSCs) have been shown to ameliorate the 

destructive effects seen during intestinal ischemia, and may serve as a novel treatment option 

for this condition.  BMSCs work to decrease intestinal permeability and to promote recovery of 

the gut-mucosal barrier following injury (13,14).  Human bone marrow mesenchymal stromal 

cells (hBMSCs) have not been previously assessed in preclinical intestinal ischemic models. We 

therefore hypothesized that 1) human BMSCs would produce more beneficial growth factors 

and lower levels of proinflammatory chemokines compared to differentiated cells, 2) direct 

application of hBMSCs to ischemic intestine would decrease mortality following injury in a dose 

dependent fashion, and 3) decreased mortality would be associated with altered post-ischemic 

intestinal and hepatic inflammation.  



METHODS 

Cell Culture 

 hBMSCs were obtained from Dr. Darwin Prokop at Texas A&M University.  His lab is 

NIH funded to procure, purify, and verify hBMSCs from human subjects.  Cells from two donors 

were obtained and plated separately onto 75 cm2 polystyrene flasks.  Cells were cultured in 

alpha-MEM (Life Technologies) with 16% FBS (Atlanta Biologicals), 1% Glutamine and 1% 

pen/strep (Sigma) at 37C in 5%CO2 in air.  Once cells reached 90% confluence, they were 

passaged by adding TrypLE Express (Life Technologies) to the culture flask.  Cells were used 

between passages 2 and 10. 

 Human nTERT keratinocytes were graciously donated by Dr. Jeffery Travers at the 

Indiana University School of Medicine.  Cells were originally purchased through ATCC and were 

cultured in Epilife media with keratinocyte growth factor (Life Technologies) at 37C in 5% CO2 in 

air. Once cells reached 90% confluence, they were passaged by adding TrypLE Express (Life 

Technologies) to the culture flask.  Cells were used between passages 24 and 35. 

In Vitro Experiments 

 Once ready for experimentation, cells were lifted from their flasks with TrypLE Express 

as above.  Cells were then pelleted at 400g for 5 mins and resuspended in fresh media.  Cells 

were then counted with the aid of an automated fluorescent cell (Luna-FL Automated Cell 

Counter, Logos Biosystems).  One hundred thousand hBMSCs or keratinocytes were plated into 

each well of a 12 well plate and allowed to adhere to the plastic overnight.  Media was changed 

the next day and cells were exposed to one of three noxious stimuli for 24 hours: 1) TNF 

50ng/ml (15), 2) LPS 200ng/ml (15), or 3) 24 hours of hypoxia with 2% oxygen.  Supernatants 

were collected and stored at -20C until analysis. 



Murine Ischemia/Reperfusion Model 

 The experimental protocol and use of animals was approved by the Indiana University 

Institutional Animal Care and Use Committee. Adult male C57Bl6J mice (8-12 weeks, 20-30g, 

Jackson Labs) were allowed to acclimate to their environments for at least 48 hours prior to 

intervention.  They had free access to standard chow and were maintained in a 12h light-dark 

cycle.  Mice were anesthetized with 3% isoflurane and maintained at 1% isoflurane for the 

duration of the procedure.  Abdomens were then shaved and prepped with 70% ethanol and 

betadine.  One milliliter of 0.9% normal saline was injected subcutaneously and a midline 

laparotomy performed.  The intestines were eviscerated and the small bowel mesenteric root 

was identified.   

 In ischemic groups, the mesenteric root was temporarily occluded with an atraumatic 

micro-vascular clamp for 60 minutes.  During the period of ischemia, the abdomen was 

temporarily closed with silk suture to prevent evaporative heat losses.  Animals were maintained 

on a heating blanket to maintain body temperature.  After 60 minutes, abdomens were re-

opened and the clamp was removed.  The abdominal fascia and skin were then closed in two 

layers.  Prior to final closure of the facial defect, hBMSCs, keratinocytes, or 250ul of PBS 

vehicle were applied directly into the peritoneal cavity.  A dose response curve was performed 

and 2 million hBMSCs (or keratinocytes) in 250ul of PBS were chosen for the remainder of 

experiments because they yielded the best survival advantage (Figure 3).  Following abdominal 

closure, triple antibiotic ointment was applied to the incision and analgesia (1 mg/kg 

buprenorphine and 5 mg/kg caprofen) was injected subcutaneously.  Animals were then allowed 

to awaken from anesthesia, were placed back in their cage, and were returned to animal 

housing.   

Survival Analysis 



Animals designated for survival analysis (N=5 sham, 10 I/R, 20 I/R + hBMSC, 10 I/R + 

keratinocyte) were monitored twice daily over 7 days following the surgery for death, pain, and 

incisional complications.  End points of analysis included animal death or when Laboratory 

Animal Resource Center veterinarians felt that animals were suffering and needed to be 

euthanized.  Survival curves were then created based on these endpoints. 

Histology 

 After 6 hours of reperfusion, animals were euthanized and intestinal segments 

approximately 2cm from the cecum were harvested (N=6 sham, 6 I/R, 12 I/R + hBMSC, 6 I/R + 

keratinocytes).  Segments were placed into 4% paraformaldehyde and subsequently 

dehydrated in 70% ethanol.  Segments were then paraffin embedded, and cut with a microtome.  

Tissue segments were placed on slides and were stained with H&E.  Histologic scoring of the 

depth of tissue injury was performed as described by Watkins, et al.: 0, no damage; 1, 

subepithelial space at the villous tip; 2, loss of mucosal lining of the villous tip; 3, loss of less 

than half of the villous structure; 4, loss of more than half of the villous structure; 5, transmural 

necrosis (11). 

Analysis of Supernatant and Tissue Cytokines 

Human IL-1, IL-3, IL-6, IL-7, IL-8, vascular endothelial growth factor (VEGF), epidermal 

growth factor (EGF), and granulocyte-monocyte colony stimulating factor (GMCSF) in cell 

supernatants were quantified with a Bioplex 200 multiplex beaded assay system (Bio-Rad) 

using multiplex plates for human inflammatory chemokines and growth factors (Millipore).  

Assays were performed at 1:1 dilution according to the manufacturer’s instructions (N=4-6 from 

2-3 separate experiments).   

Mouse intestinal and hepatic tissue segments (N=6 sham, 6 I/R, 12 I/R + hBMSC, 6 I/R 

+ keratinocytes) were thawed and homogenized in RIPA buffer (Sigma) with protease and 



phosphatase cocktail inhibitors (1:100 dilution, Sigma).  Homogenates were centrifuged at 

12,000 rpm to pellet extraneous tissue, and supernatants were transferred to fresh eppendorff 

tubes for storage at -80C.  Total protein concentration was then quantified by Bradford Assay 

using a spectrophotometer (Versamax microplate reader, Molecular Devices).  Murine 

expression of soluble activin receptor-like kinase 1 (sALK-1), betacellulin, endothelin, VEGF, IL-

6, IP-10, eotaxin, monokine induced by gamma interferon (MIG), and MCP-1 were quantified 

with a Bioplex 200 multiplex beaded assay system (Bio-Rad) using multiplex plates for murine 

inflammatory chemokines and growth factors (Millipore).  Assays were performed at 1:25 

dilution according to the manufacturer’s instructions.   

Statistical Analysis 

 Data are expressed as the mean +/- the standard error of the mean.  Survival was 

compared using the Mantel-Cox log rank test and the Gehan-Breslow-Wilcoxon test.  Students t 

test was performed to compare groups for cytokine analysis.  A p value of less than 0.05 was 

considered statistically significant. 

RESULTS 

hMSCs produce high levels of growth factors and low levels of proinflammatory chemokines 

 hBMSCs produced higher levels of VEGF and EGF at baseline and after stimulation with 

TNF, LPS, and hypoxia compared to their keratinocyte counterparts.  IL-6 was also higher in 

TNF stimulated hBMSCs, and IL-8 higher in TNF and LPS stimulated hBMSCs compared to 

keratinocytes (Figure 1).  In contrast, keratinocytes produced significantly higher levels of IL-1, 

IL-3, IL-7, and GMCSF at baseline and with stimulation as compared to hBMSCs (Figure 2).  

Thus, the profile of cytokine and chemokine secretion differed between hBMSCs and 

keratinocytes at baseline and following stimulation. 



hMSCs decrease mortality following intestinal I/R in a dose dependent manner 

 Temporary occlusion of the superior mesenteric artery resulted in marked intestinal 

ischemia and a 7 day mortality rate of 70% compared to 0% mortality in sham animals (Figure 

3A, p=0.04).  Addition of hBMSCs following ischemia significantly decreased the mortality in a 

dose dependent fashion (Figure 3B).  Maximum benefit was seen with the application of 2 

million hBMSCs, the highest dose tested.  Application of 2 million hBMSCs following ischemia 

decreased the seven day mortality to 10 percent (Figure 3C, p=0.0004).  No survival benefit 

was seen with infusion of human keratinocytes following intestinal I/R. These data identify 

hBMSCs as providing a robust survival advantage to mice following experimental intestinal I/R 

injury compared to human keratinocytes. 

hBMSCs do not improve histological profiles following 6 hour reperfusion 

When assaying intestinal histology, sham animals maintained intact crypt/villus 

structures with normal appearing goblet cells and epithelium (Figure 4A).  Intestinal morphology 

from ischemic animals was noted to have shortened crypt villus height, decreased goblet cells, 

and notable bowel wall hemorrhage in focal regions (Figure 4B).  Cellular therapy with hBMSCs 

(Figure 4C) or keratinocytes (4D) demonstrated similar histologic profiles compared to I/R 

animals without therapy.  Sham animals had an average histology score of 0, I/R animals an 

average score of 0.83+/-0.83, I/R + hBMSC animals an average score of 2.0 +/-.59, and I/R + 

keratinocytes an average of 1.5 +/-0.67 (Figure E). These results suggest that the survival 

benefits provided to mice following intestinal I/R injury by direct application of hBMSCs were not 

related to significant improvements in the morphology of the recovering intestine. 

Angiogenic growth factors and pro-inflammatory chemokines are altered with cellular therapy 

 Intestinal I/R significantly increased murine intestinal tissue levels of sALK-1, endothelin, 

betacellulin, eotaxin, MCP-1, IP-10, and IL-6, but had little effect on VEGF, GCSF, and MIG.  



hBMSC and keratinocyte therapy following I/R significantly decreased tissue levels of sALK-1, 

endothelin, and betacellulin, but hBMSC therapy yielded significantly higher levels of intestinal 

VEGF compared to intestine from animals treated with keratinocytes (Figure 5).  Cellular 

therapy also significantly increased murine intestinal levels of eotaxin, MIG, IP-10, and MCP-1, 

which are involved in leukocyte chemotaxis and inflammation (Figure 6).  Murine intestinal IL-6 

trended higher with hBMSC therapy, but did not reach statistical significance.  Intestinal MIG 

was noted to be significantly higher in keratinocyte treated groups compared to hBMSC therapy. 

 Murine hepatic levels of measured angiogenic factors were not significantly altered by 

intestinal I/R without therapy (Figure 8).  Murine hepatic levels of MIG, and GCSF were elevated 

by intestinal ischemia, and MIG, IP-10, and GCSF were significantly lower in hBMSC treated 

livers than in keratinocyte treated livers (Figure 9). These results suggested that local delivery of 

hBMSCs and keratinocytes into the peritoneal cavity of mice following intestinal I/R injury 

resulted in differential activation of liver chemokine and cytokine expression.  

DISCUSSION 

Intestinal ischemia and necrosis impact a wide variety of patient populations that include 

the very young to the very old.  Current therapy for intestinal ischemia is lacking, and surgical 

therapy is limited to operative interventions that relieve the ischemia as in cases of mesenteric 

thrombus, volvulus, or bowel obstruction.  Many times though, surgeons are forced to perform 

salvage operations where involved bowel is excised due to necrosis or perforation.  Surgeons 

therefore have a unique opportunity to salvage ischemic intestine through the direct application 

of novel drugs, devices, or cellular therapies to the injured bowel at the time of surgical 

intervention.  Alternative modes of therapy are clearly warranted to rescue injured bowel and 

increase survival both during and following ischemia.  In this study, we found that human 

BMSCs decreased mortality following intestinal ischemia.  We also appreciated that hBMSCs 



secreted growth factors and produced lower levels of proinflamatory mediators compared to 

keratinocytes.  In addition hBMSCs triggered higher levels of murine intestinal VEGF 

production, and lower levels of hepatic proinflammatory chemokine production compared to 

animal treated with keratinocyte control cells.     

 Previous studies have demonstrated the benefits of BMSCs during ischemia and 

reperfusion injury (16-18).  However this is the first study to demonstrate a survival advantage 

with the use of BMSCs for intestinal ischemic pathology.  Additionally it is the first study to report 

the use of human BMSCs in this disease process.  Although the exact cause of death was 

unclear following mesenteric occlusion, previous studies have denoted acute cardiovascular 

collapse (19), alveolo-capillary dysfunction, and debilitating pulmonary hypertension (20) as 

causative factors of mortality.  Additionally, increased intestinal permeability and bacterial 

translocation likely lead to a state of sepsis and end organ failure.  Intestinal perforation was not 

appreciated and did not appear to be a cause of death in this study. 

Stromal cells likely provide their beneficial effects to injured tissues through a 

multifactorial approach.  First, BMSCs may integrate into injured tissue, differentiate into end 

organ cells and work to restore tissue architecture (21). Although several studies have showed 

engraftment of these cells following transplantation (22) this scenario is not as likely in this 

model given that animals started to succumb in as little as 6-12 hours following intestinal injury.  

Integration, differentiation, and restitution would likely take longer to accomplish in order to 

salvage the animals from this time point.  A second plausible method of protection is that the 

BMSC binds to an injured intestinal cell and “downloads” vital materials into the native cell such 

as mitochondria, ATP, or other vital nutrients (23,24).  Mitochondrial dysfunction and energy 

uncoupling are an underlying result of the disruption of oxygen and substrate supply to tissues 

during ischemia (25).  This disruption, which can happen in as little as 15 minutes, can lead to 

sustained depolarization, electrical uncoupling, and cell death (25).  This mode of protection is 



possible, as it could happen fairly quickly upon initiation of therapy. A third possible mechanism 

of therapy is through the release of paracrine mediators (26).  This is highly plausible in that the 

hBMSCs could release multiple factors that then work both locally and systemically to mitigate 

the detrimental factors that are being released by the bowel during ischemia/reperfusion.  This 

study demonstrates that hBMSCs release a number of beneficial factors, including VEGF and 

EGF, and lower levels of proinflammatory mediators including IL-1 and GMCSF. 

Other studies have noted improved histological profiles after mesenchymal stromal cell 

therapy (11).  It is not entirely clear why the histological profiles for those animals treated with 

cellular therapy were higher, albeit not significantly higher, than non-treated animals.  Many 

studies that have examined BMSC reparative effects on the bowel have either limited the area 

of injury to the terminal ileum, or have injected the BMSCs directly into the submucosa, thereby 

localizing the area of injury, therapy, and study. Injury of the entire small bowel in our model 

along with injection of the cells into the entire peritoneal cavity may have effectively diluted the 

cells, thereby limiting the ability of the cells to promote histologically reparative effects on such a 

large scale.  Perhaps even larger doses of cells or infusion by an intravenous route would have 

accomplished these changes.  It is also possible that improved histology scores would have 

been appreciated with a longer reperfusion period, but we were interested in what the bowel 

would look like before animals started to die, which began to occur between 6 and 12 hours 

after injury.  We therefore chose the 6 hour reperfusion period to capture all viable subjects. 

Murine intestinal proinflammatory chemokines, including IL-6, IP-10, eotaxin, MIG, and 

MCP-1 were elevated in the intestine in animals receiving either hBMSC or keratinocyte 

therapy.  These chemokines are markers of inflammation and would suggest an elevated 

intestinal stimulus for enhancing leukocyte chemotaxis and homing to the area of injury.  

Elevations in these factors corroborate the observed histology profiles in that cellular therapy 



seemed to increase the histological injury scores.  Elevated leukocytes in the area of injury are 

likely necessary for repair of damaged tissues and removal of dead cells and debris.   

Murine intestinal sALK-1, betacellulin and endothelin were all noted to be decreased in 

cell treated ischemic groups.  These factors are involved in endothelial mobilization and 

neovasculogenesis (27,28).  It was initially expected that these markers might be elevated with 

hBMSC therapy, thereby indicating that the stromal cells promote survival by increasing 

neovasculogenesis.  However, neoangiogenic markers were decreased, possibly suggesting a 

decreased need for new blood vessel formation.  VEGF, a common chemokine involved in 

neovasculogenesis and tissue ischemia (29), was not observed to be elevated in ischemic 

intestinal tissue extracts or those treated with hBMSCs in this model.  However, VEGF from 

murine intestines treated with hBMSCs was significantly higher than VEGF levels in 

keratinocyte treated groups.  One reason for the lack of elevation with ischemia could be due to 

its relatively short half-life (29), and therefore, tissue levels may have normalized during the six 

hour reperfusion period.   

Murine hepatic levels of angiogenic factors were not readily affected with the intestinal 

I/R model.  Murine hepatic levels of the proinflammatory mediators MIG and GCSF were 

elevated by intestinal ischemia, and MIG, IP-10, and GCSF were significantly higher in 

keratinocyte treated livers than in hBMSC treated livers.  Lower levels of these proinflammatory 

mediators in the liver following hBMSC therapy may suggest that hBMSCs work to decrease 

systemic inflammation, rather than acting locally at the sites of injury.  

A potential reason for the discrepant differences seen with human cellular therapy may 

be due to the barriers and incomplete understandings associated with xenotransplantation.  In 

theory, one should not be able to place human cells into a mouse model without the cells being 

destroyed by the host.  However, mesenchymal stromal cells have unique immunomodulatory 



properties that suppress T-lymphocyte proliferation and allow them to be transplanted across 

species (30).  There have been at least 27 different studies where human mesenchymal stromal 

cells have been placed into immunocompetent hosts of different species (31).  Interestingly, in 

many of these cases, the cells survived several weeks and even engrafted into host tissue (22).  

Despite the perceived advantages of BMSC therapy, the mechanism for this 

immunosuppression is not completely understood, and some investigators have even 

appreciated persistent CD4+ lymphocyte immune responses following xenogenic mesenchymal 

stromal cell transplant (32).  These responses are often short lived though, and tend to diminish 

over time (33). However, as previously mentioned, the benefits of hBMSC therapy clearly come 

within the first 12-24 hours of therapy, as many animals exposed to intestinal I/R injury that were 

not treated with hBMSCs succumbed during this time period. 

CONCLUSION 

 Human BMSCs have shown promise in the treatment of intestinal ischemic pathology.  

Herein, we demonstrated that hBMSCs secrete beneficial growth factors and limit inflammatory 

chemokine production following stimulation.  Moreover, hBMSCs decrease mortality following 

intestinal ischemia and reperfusion injury as compared to animals treated with a differentiated 

keratinocyte control cell population.  The mechanism of this survival benefit is likely 

multifactorial, but may be associated with a decreased systemic inflammatory response 

associated with hBMSC therapy.  Although the release of paracrine mediators from hBMSCs is 

very plausible, additional studies are needed to define which mediators are most important.  

Further studies will focus on utilizing molecular techniques to silence beneficial paracrine factors 

more prominent in hBMSCs (VEGF and EGF) and detrimental factors in keratinocytes (IL-1, 

GCSF) in order to see if survival and tissue inflammation can be normalized.   

 



FIGURE LEGENDS 

Figure 1: hBMSCs produce higher levels of (A) VEGF, (B) EGF, (C)IL-6, and (D) IL-8 compared 

to keratinocytes when stimulated with TNF, LPS and hypoxia.  * = p<0.05 compared to 

keratinocyte counterpart 

Figure 2:  Keratinocytes produce more (A) IL-1, (B) IL-3, (C) IL-7, and (D) GMCSF compared to 

hBMSCs when stimulated with TNF, LPS, and hypoxia.  * =  p<0.05 compared to hBMSC 

counterpart 

Figure 3: A) SMA occlusion resulted in 70% seven day mortality, while (B) application of human 

BMSCs after ischemia resulted in decreased mortality in a dose dependent fashion.  (C) Use of 

hBMSCs decreased 7 day mortality by 60 percent compared to no therapy or keratinocyte 

therapy. *=p=0.04 versus Sham, #=p=0.0004 versus I/R 

Figure 4: Representative H&E stained intestine following (A) Sham laparotomy, (B) I/R injury, 

(C) I/R + hBMSC therapy, and (D) I/R + keratinocyte therapy. (E) Histology scoring of intestinal 

specimens. 0, no damage; 1, subepithelial space at the villous tip; 2, loss of mucosal lining of 

the villous tip; 3, loss of less than half of the villous structure; 4, loss of more than half of the 

villous structre; 5, transmural necrosis.   

Figure 5: Cellular therapy decreased intestinal tissue levels of (A) sALK-1, (B) betacellulin, and 

(C) endothelin.  (D) Levels of VEGF were not altered by intestinal I/R or with the use of 

hBMSCs. Keratinocyte therapy also decreased levels of these factors.  Murine intestinal VEGF 

levels were significantly decreased following keratinocyte therapy.  * = p<0.05 versus sham, # = 

p<0.05 versus I/R, $ = p<0.05 versus I/R + hBMSCs. 

Figure 6: Cellular therapy increased intestinal tissue levels of (A) eotaxin, (B) MIG, (C) MCP-1, 

(D) IP-10, (E) IL-6, and (F) GCSF. Keratinocyte therapy yielded similar elevations in these 



factors, with the only significant difference being with MIG * = p<0.05 versus sham, # = p<0.05 

versus I/R, $ = p<0.05 versus I/R + hBMSCs. 

Figure 7: Intestinal ischemia did not have a significant effect on murine hepatic production of 

angiogenic factors.  Hepatic levels of (A) sALK-1 were not detectable.  (B) betacellulin, and (C) 

endothelin have similar levels between sham, I/R, and I/R + cellular therapy groups.  (D) Murine 

hepatic levels of VEGF were not altered by intestinal I/R or with the use of hBMSCs. 

Keratinocyte therapy, however, significantly increased detectable stores of murine hepatic 

VEGF.   * = p<0.05 versus sham, # = p<0.05 versus I/R 

Figure 8: Intestinal ischemia or cellular therapy did not have an effect on eotaxin, MCP1, or IL-6 

levels.  Cellular therapy increased hepatic tissue levels of (B) MIG and (F) GCSF.  Keratinocyte 

therapy after I/R yielded significantly higher levels of (B) MIG, (D) IP-10, and (F) GCSF 

compared to hBMSC therapy * = p<0.05 versus sham, # = p<0.05 versus I/R, $ = p<0.05 versus 

I/R + hBMSCs. 
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