38 research outputs found

    El uso de las plantas para el lavado y teñido de tejidos en época romana. Análisis de residuos de la fullonica y la tinctoria de Barcino

    Get PDF
    .- El estudio de residuos de la fullonica y tinctoria de Barcino supone un avance significativo en el conocimiento de las plantas empleadas en actividades textiles de la Hispania romana. Destaca la presencia de cenizas, orina fermentada y lavanda para el lavado, y de azules vegetales y minerales, óxido de hierro, cal y alumbre, para el teñido. The use of plants for the laundry and dyeing of textiles in Roman Hispania. Residues analysis of the fu llonica and tinctoria at Barcino..- The analysis of remains from the fullonica and tinctoria of Barcino represents a substantial ad vance in the research about plant uses for textile production in Roman Hispania. The most significant finds are ashes, fermented urine and lavender for the laundry, and of vegetal and mineral blue, iron oxides, lime and alum for the dyeing work

    El ghetto de Venècia: de reducte jueu a patrimoni cultural i recurs turístic

    Get PDF
    Aquest article analitza el projecte de transformació del Ghetto de Venècia de reducte jueu i punt obscur de la ciutat, a producte cultural i turístic de primer ordre; un projecte en el qual hi han col·laborat tant la mateixa comunitat jueva veneciana com les diferents administracions públiques i institucions privades interessades en la conservació i promoció d'aquest patrimoni. Aquest estudi analitza aquesta transformació. Per a la seva delimitació, es va dur a terme una anàlisi documental de la informació generada per diferents institucions culturals i turístiques, així com entrevistes amb els actors mateixos, relacionats tant amb la recuperacíó com amb laposada en valor del patrimoni jueu de la ciutat de Venècia

    Nuevos datos sobre la evolución del paisaje y los recursos vegetales en el Abric del Filador (Margalef de Montsant, Tarragona)

    Get PDF
    Este estudio propone una metodología para la aplicación de la fitolitología en arqueología. En concreto, presentamos los primeros resultados de la investigación realizada en los niveles epipaleolíticos y neolíticos del Abric del Filador (Margalef de Montsant, Tarragona). Los datos obtenidos en los muestreos de los estratos arqueológicos y en los hogares, se presentan conjuntamente con la información obtenida por otros análisis arqueobotánicos realizados en el yacimiento.This study discusses the use of phytolithological methods in archaeology. In particular, it presents the preliminary results of the investigation in Epipaleolithic and Neolithic levels at Abric del Filador (Margalef del Montsant, Tarragona, Spain). The data obtained from sampies yielded in the archaeologicallayers and in the fire-places are evaluate in relation to a diverse set of archaeobotanical issues

    World Heritage: How to generate wealthness? How to engage communities?: some reflections

    Get PDF
    Depto. de Prehistoria, Historia Antigua y ArqueologíaFac. de Geografía e HistoriaTRUEMinisterio de Economía y Competitividad (MINECO)pu

    Pressure-Induced Phase Transitions in Sesquioxides

    Full text link
    [EN] Pressure is an important thermodynamic parameter, allowing the increase of matter density by reducing interatomic distances that result in a change of interatomic interactions. In this context, the long range in which pressure can be changed (over six orders of magnitude with respect to room pressure) may induce structural changes at a much larger extent than those found by changing temperature or chemical composition. In this article, we review the pressure-induced phase transitions of most sesquioxides, i.e., A(2)O(3) compounds. Sesquioxides constitute a big subfamily of ABO(3) compounds, due to their large diversity of chemical compositions. They are very important for Earth and Materials Sciences, thanks to their presence in our planet's crust and mantle, and their wide variety of technological applications. Recent discoveries, hot spots, controversial questions, and future directions of research are highlighted.This research was funded by Spanish Ministerio de Ciencia, Innovacion y Universidades under grants MAT2016-75586-C4-1/2/3-P, FIS2017-83295-P, PGC2018-094417-B-100, and RED2018-102612-T (MALTA-Consolider-Team network) and by Generalitat Valenciana under grant PROMETEO/2018/123 (EFIMAT). J. A. S. also acknowledges Ramon y Cajal Fellowship for financial support (RYC-2015-17482).Manjón, F.; Sans-Tresserras, JÁ.; Ibáñez, J.; Pereira, ALDJ. (2019). Pressure-Induced Phase Transitions in Sesquioxides. Crystals. 9(12):1-32. https://doi.org/10.3390/cryst9120630S132912Adachi, G., & Imanaka, N. (1998). The Binary Rare Earth Oxides. Chemical Reviews, 98(4), 1479-1514. doi:10.1021/cr940055hZINKEVICH, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597-647. doi:10.1016/j.pmatsci.2006.09.002Manjón, F. J., & Errandonea, D. (2008). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238Hoekstra, H. R., & Gingerich, K. A. (1964). High-Pressure B-Type Polymorphs of Some Rare-Earth Sesquioxides. Science, 146(3648), 1163-1164. doi:10.1126/science.146.3648.1163Sawyer, J. O., Hyde, B. G., & Eyring, L. (1965). Pressure and Polymorphism in the Rare Earth Sesquioxides. Inorganic Chemistry, 4(3), 426-427. doi:10.1021/ic50025a043Vegas, A., & Isea, R. (1998). Distribution of the M-M Distances in the Rare Earth Oxides. Acta Crystallographica Section B Structural Science, 54(6), 732-740. doi:10.1107/s0108768198003759Jiang, S., Liu, J., Lin, C., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2010). Pressure-induced phase transition in cubic Lu2O3. Journal of Applied Physics, 108(8), 083541. doi:10.1063/1.3499301Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2013). Anharmonic behavior and structural phase transition in Yb2O3. AIP Advances, 3(12), 122123. doi:10.1063/1.4858421Sahu, P. C., Lonappan, D., & Shekar, N. V. C. (2012). High Pressure Structural Studies on Rare-Earth Sesquioxides. Journal of Physics: Conference Series, 377, 012015. doi:10.1088/1742-6596/377/1/012015Irshad, K. A., Anees, P., Sahoo, S., Sanjay Kumar, N. R., Srihari, V., Kalavathi, S., & Chandra Shekar, N. V. (2018). Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations. Journal of Applied Physics, 124(15), 155901. doi:10.1063/1.5049223Yan, D., Wu, P., Zhang, S. P., Liang, L., Yang, F., Pei, Y. L., & Chen, S. (2013). Assignments of the Raman modes of monoclinic erbium oxide. Journal of Applied Physics, 114(19), 193502. doi:10.1063/1.4831663Ren, X., Yan, X., Yu, Z., Li, W., & Wang, L. (2017). Photoluminescence and phase transition in Er2O3 under high pressure. Journal of Alloys and Compounds, 725, 941-945. doi:10.1016/j.jallcom.2017.07.219Lonappan, D., Shekar, N. V. C., Ravindran, T. R., & Sahu, P. C. (2010). High-pressure phase transition in Ho2O3. Materials Chemistry and Physics, 120(1), 65-67. doi:10.1016/j.matchemphys.2009.10.022Jiang, S., Liu, J., Li, X., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2011). Phase transformation of Ho2O3at high pressure. Journal of Applied Physics, 110(1), 013526. doi:10.1063/1.3603027Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2014). Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study. Journal of Applied Physics, 116(13), 133504. doi:10.1063/1.4896832Yan, X., Ren, X., He, D., Chen, B., & Yang, W. (2014). Mechanical behaviors and phase transition of Ho2O3nanocrystals under high pressure. Journal of Applied Physics, 116(3), 033507. doi:10.1063/1.4890341Sharma, N. D., Singh, J., Dogra, S., Varandani, D., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2011). Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide. Journal of Raman Spectroscopy, 42(3), 438-444. doi:10.1002/jrs.2720Jiang, S., Liu, J., Lin, C., Bai, L., Zhang, Y., Li, X., … Wang, H. (2013). Structural transformations in cubic Dy2O3 at high pressures. Solid State Communications, 169, 37-41. doi:10.1016/j.ssc.2013.06.027Chen, H., He, C., Gao, C., Ma, Y., Zhang, J., Wang, X., … Zou, G. (2007). The structural transition of Gd2O3nanoparticles induced by high pressure. Journal of Physics: Condensed Matter, 19(42), 425229. doi:10.1088/0953-8984/19/42/425229Chen, C.-S., Cheung, K., & Yuan, T.-C. (2007). Novel collider signatures for Little Higgs dark matter models. Physics Letters B, 644(2-3), 158-164. doi:10.1016/j.physletb.2006.11.050Zhang, F. X., Lang, M., Wang, J. W., Becker, U., & Ewing, R. C. (2008). Structural phase transitions of cubicGd2O3at high pressures. Physical Review B, 78(6). doi:10.1103/physrevb.78.064114Dilawar, N., Varandani, D., Mehrotra, S., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2008). Anomalous high pressure behaviour in nanosized rare earth sesquioxides. Nanotechnology, 19(11), 115703. doi:10.1088/0957-4484/19/11/115703Dilawar, N., Varandani, D., Pandey, V. P., Kumar, M., Shivaprasad, S. M., Sharma, P. K., & Bandyopadhyay, A. K. (2006). Structural Transition in Nanostructured Eu2O3 Under High Pressures. Journal of Nanoscience and Nanotechnology, 6(1), 105-113. doi:10.1166/jnn.2006.17913Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019Jiang, S., Liu, J., Lin, C., Li, X., & Li, Y. (2013). High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. Journal of Applied Physics, 113(11), 113502. doi:10.1063/1.4795504Liu, D., Lei, W., Li, Y., Ma, Y., Hao, J., Chen, X., … Zou, G. (2009). High-Pressure Structural Transitions of Sc2O3by X-ray Diffraction, Raman Spectra, and Ab Initio Calculations. Inorganic Chemistry, 48(17), 8251-8256. doi:10.1021/ic900889vOvsyannikov, S. V., Bykova, E., Bykov, M., Wenz, M. D., Pakhomova, A. S., Glazyrin, K., … Dubrovinsky, L. (2015). Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 118(16), 165901. doi:10.1063/1.4933391Bai, X., Song, H. W., Liu, B. B., Hou, Y. Y., Pan, G. H., & Ren, X. G. (2008). Effects of High Pressure on the Luminescent Properties of Nanocrystalline and Bulk Y2O3:Eu3+. Journal of Nanoscience and Nanotechnology, 8(3), 1404-1409. doi:10.1166/jnn.2008.351Jovanić, B. R., Dramićanin, M., Viana, B., Panić, B., & Radenković, B. (2008). High-pressure optical studies of Y2O3:Eu3+nanoparticles. Radiation Effects and Defects in Solids, 163(12), 925-931. doi:10.1080/10420150802082705Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701Dai, R. C., Zhang, Z. M., Zhang, C. C., & Ding, Z. J. (2010). Photoluminescence and Raman Studies of Y2O3:Eu3+ Nanotubes Under High Pressure. Journal of Nanoscience and Nanotechnology, 10(11), 7629-7633. doi:10.1166/jnn.2010.2752DAI, R., WANG, Z., ZHANG, Z., & DING, Z. (2010). Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. Journal of Rare Earths, 28, 241-245. doi:10.1016/s1002-0721(10)60275-xYusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2010). Dense Yttria Phase Eclipsing the A-Type Sesquioxide Structure: High-Pressure Experiments and ab initio Calculations. Inorganic Chemistry, 49(10), 4478-4485. doi:10.1021/ic100042zBose, P. P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2012). High Pressure Phase Transitions in Yttria, Y2O3. Journal of Physics: Conference Series, 377, 012036. doi:10.1088/1742-6596/377/1/012036Srivastava, A. M., Renero-Lecuna, C., Santamaría-Pérez, D., Rodríguez, F., & Valiente, R. (2014). Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. Journal of Luminescence, 146, 27-32. doi:10.1016/j.jlumin.2013.09.028Zhang, Q., Wu, X., & Qin, S. (2017). Pressure-induced phase transition of B-type Y 2 O 3. Chinese Physics B, 26(9), 090703. doi:10.1088/1674-1056/26/9/090703Chen, G., Peterson, J. R., & Brister, K. E. (1994). An Energy-Dispersive X-Ray Diffraction Study of Monoclinic Eu2O3 under Pressure. Journal of Solid State Chemistry, 111(2), 437-439. doi:10.1006/jssc.1994.1250Atou, T., Kusaba, K., Tsuchida, Y., Utsumi, W., Yagi, T., & Syono, Y. (1989). Reversible B-type - A-type transition of Sm2O3 under high pressure. Materials Research Bulletin, 24(9), 1171-1176. doi:10.1016/0025-5408(89)90076-7Hongo, T., Kondo, K., Nakamura, K. G., & Atou, T. (2007). High pressure Raman spectroscopic study of structural phase transition in samarium oxide. Journal of Materials Science, 42(8), 2582-2585. doi:10.1007/s10853-006-1417-5Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154gPandey, K. K., Garg, N., Mishra, A. K., & Sharma, S. M. (2012). High pressure phase transition in Nd2O3. Journal of Physics: Conference Series, 377, 012006. doi:10.1088/1742-6596/377/1/012006Jiang, S., Liu, J., Bai, L., Li, X., Li, Y., He, S., … Liang, D. (2018). Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy. AIP Advances, 8(2), 025019. doi:10.1063/1.5018020Lipp, M. J., Jeffries, J. R., Cynn, H., Park Klepeis, J.-H., Evans, W. J., Mortensen, D. R., … Chow, P. (2016). Comparison of the high-pressure behavior of the cerium oxidesCe2O3andCeO2. Physical Review B, 93(6). doi:10.1103/physrevb.93.064106Hirosaki, N., Ogata, S., & Kocer, C. (2003). Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds, 351(1-2), 31-34. doi:10.1016/s0925-8388(02)01043-5Marsella, L., & Fiorentini, V. (2004). Structure and stability of rare-earth and transition-metal oxides. Physical Review B, 69(17). doi:10.1103/physrevb.69.172103Petit, L., Svane, A., Szotek, Z., & Temmerman, W. M. (2005). First-principles study of rare-earth oxides. Physical Review B, 72(20). doi:10.1103/physrevb.72.205118WU, B., ZINKEVICH, M., WANG, C., & ALDINGER, F. (2006). Ab initio energetic study of oxide ceramics with rare-earth elements. Rare Metals, 25(5), 549-555. doi:10.1016/s1001-0521(06)60097-1Singh, N., Saini, S. M., Nautiyal, T., & Auluck, S. (2006). Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd). Journal of Applied Physics, 100(8), 083525. doi:10.1063/1.2353267Mikami, M., & Nakamura, S. (2006). Electronic structure of rare-earth sesquioxides and oxysulfides. Journal of Alloys and Compounds, 408-412, 687-692. doi:10.1016/j.jallcom.2005.01.068Wu, B., Zinkevich, M., Aldinger, F., Wen, D., & Chen, L. (2007). Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory. Journal of Solid State Chemistry, 180(11), 3280-3287. doi:10.1016/j.jssc.2007.09.022Rahm, M., & Skorodumova, N. V. (2009). Phase stability of the rare-earth sesquioxides under pressure. Physical Review B, 80(10). doi:10.1103/physrevb.80.104105Richard, D., Muñoz, E. L., Rentería, M., Errico, L. A., Svane, A., & Christensen, N. E. (2013). AbinitioLSDA and LSDA+Ustudy of pure and Cd-doped cubic lanthanide sesquioxides. Physical Review B, 88(16). doi:10.1103/physrevb.88.165206Richard, D., Errico, L. A., & Rentería, M. (2016). Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT + U calculations. Journal of Alloys and Compounds, 664, 580-589. doi:10.1016/j.jallcom.2015.12.236Ogawa, T., Otani, N., Yokoi, T., Fisher, C. A. J., Kuwabara, A., Moriwake, H., … Takata, M. (2018). Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Physical Chemistry Chemical Physics, 20(24), 16518-16527. doi:10.1039/c8cp02497aPathak, A. K., & Vazhappilly, T. (2018). Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides. physica status solidi (b), 255(6), 1700668. doi:10.1002/pssb.201700668Catlow, C. R. A., Guo, Z. X., Miskufova, M., Shevlin, S. A., Smith, A. G. H., Sokol, A. A., … Woodley, S. M. (2010). Advances in computational studies of energy materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3379-3456. doi:10.1098/rsta.2010.0111Caracas, R. (2005). Prediction of a new phase transition in Al2O3at high pressures. Geophysical Research Letters, 32(6). doi:10.1029/2004gl022204Funamori, N. (1997). High-Pressure Transformation of Al2O3. Science, 278(5340), 1109-1111. doi:10.1126/science.278.5340.1109Jephcoat, A. P., Hemley, R. J., & Mao, H. K. (1988). X-ray diffraction of ruby (Al2O3:Cr3+) to 175 GPa. Physica B+C, 150(1-2), 115-121. doi:10.1016/0378-4363(88)90112-xDewaele, A., & Torrent, M. (2013). Equation of state ofα-Al2O3. Physical Review B, 88(6). doi:10.1103/physrevb.88.064107Costa, T. M. H., Gallas, M. R., Benvenutti, E. V., & da Jornada, J. A. H. (1999). Study of Nanocrystalline γ-Al2O3Produced by High-Pressure Compaction. The Journal of Physical Chemistry B, 103(21), 4278-4284. doi:10.1021/jp983791oHart, H. V., & Drickamer, H. G. (1965). Effect of High Pressure on the Lattice Parameters of Al2O3. The Journal of Chemical Physics, 43(7), 2265-2266. doi:10.1063/1.1697121Mashimo, T., Tsumoto, K., Nakamura, K., Noguchi, Y., Fukuoka, K., & Syono, Y. (2000). High-pressure phase transformation of corundum (α-Al2O3) observed under shock compression. Geophysical Research Letters, 27(14), 2021-2024. doi:10.1029/2000gl008490ONO, S., OGANOV, A., KOYAMA, T., & SHIMIZU, H. (2006). Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle. Earth and Planetary Science Letters, 246(3-4), 326-335. doi:10.1016/j.epsl.2006.04.017Zhao, J., Hearne, G. R., Maaza, M., Laher-Lacour, F., Witcomb, M. J., Le Bihan, T., & Mezouar, M. (2001). Compressibility of nanostructured alumina phases determined from synchrotron x-ray diffraction studies at high pressure. Journal of Applied Physics, 90(7), 3280-3285. doi:10.1063/1.1394915Thomson, K. T., Wentzcovitch, R. M., & Bukowinski, M. S. T. (1996). Polymorphs of Alumina Predicted by First Principles: Putting Pressure on the Ruby Pressure Scale. Science, 274(5294), 1880-1882. doi:10.1126/science.274.5294.1880Jahn, S., Madden, P., & Wilson, M. (2004). Dynamic simulation of pressure-driven phase transformations in crystalline Al2O3. Physical Review B, 69(2). doi:10.1103/physrevb.69.020106Tsuchiya, J., Tsuchiya, T., & Wentzcovitch, R. M. (2005). Transition from theRh2O3(II)-to-CaIrO3structure and the high-pressure-temperature phase diagram of alumina. Physical Review B, 72(2). doi:10.1103/physrevb.72.020103García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107Sans, J. A., Vilaplana, R., Errandonea, D., Cuenca-Gotor, V. P., García-Domene, B., Popescu, C., … Muñoz, A. (2017). Structural and vibrational properties of corundum-type In2O3nanocrystals under compression. Nanotechnology, 28(20), 205701. doi:10.1088/1361-6528/aa6a3fLipinska-Kalita, K. E., Chen, B., Kruger, M. B., Ohki, Y., Murowchick, J., & Gogol, E. P. (2003). High-pressure x-ray diffraction studies of the nanostructured transparent vitroceramic mediumK2O−SiO2−Ga2O3. Physical Review B, 68(3). doi:10.1103/physrevb.68.035209Luan, S., Dong, L., & Jia, R. (2019). Analysis of the structural, anisotropic elastic and electronic properties of β-Ga2O3 with various pressures. Journal of Crystal Growth, 505, 74-81. doi:10.1016/j.jcrysgro.2018.09.031Machon, D., McMillan, P. F., Xu, B., & Dong, J. (2006). High-pressure study of theβ-to-αtransition inGa2O3. Physical Review B, 73(9). doi:10.1103/physrevb.73.094125Wang, H., He, Y., Chen, W., Zeng, Y. W., Stahl, K., Kikegawa, T., & Jiang, J. Z. (2010). High-pressure behavior of β-Ga2O3 nanocrystals. Journal of Applied Physics, 107(3), 033520. doi:10.1063/1.3296121Claussen, W. F., & Mackenzie, J. D. (1959). CRYSTALLIZATION OF B2O3AT HIGH PRESSURES1. Journal of the American Chemical Society, 81(4), 1007-1007. doi:10.1021/ja01513a063Brazhkin, V. V., Katayama, Y., Inamura, Y., Kondrin, M. V., Lyapin, A. G., Popova, S. V., & Voloshin, R. N. (2003). Structural transformations in liquid, crystalline, and glassy B2O3 under high pressure. Journal of Experimental and Theoretical Physics Letters, 78(6), 393-397. doi:10.1134/1.1630134Nicholas, J., Sinogeikin, S., Kieffer, J., & Bass, J. (2004). Spectroscopic Evidence of Polymorphism in VitreousB2O3. Physical Review Letters, 92(21). doi:10.1103/physrevlett.92.215701Lee, S. K., Mibe, K., Fei, Y., Cody, G. D., & Mysen, B. O. (2005). Structure ofB2O3Glass at High Pressure: AB11Solid-State NMR Study. Physical Review Letters, 94(16). doi:10.1103/physrevlett.94.165507Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241Weir, S. T., Mitchell, A. C., & Nellis, W. J. (1996). Electrical resistivity of single‐crystal Al2O3shock‐compressed in the pressure range 91–220 GPa (0.91–2.20 Mbar). Journal of Applied Physics, 80(3), 1522-1525. doi:10.1063/1.362946Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640Song, H. I., Kim, E. S., & Yoon, K. H. (1988). Phase transformation and characteristics of beta-alumina. Physica B+C, 150(1-2), 148-159. doi:10.1016/0378-4363(88)90117-9ENGÜRLÜ, S., TAŞLIÇUKUR ÖZTÜRK, Z., & KUŞKONMAZ, N. (2017). Investigation of the Production of β-Al2O3 Solid Electrolyte from Seydişehir α-Al2O3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 816. doi:10.19113/sdufbed.31721Duan, W., Wentzcovitch, R. M., & Thomson, K. T. (1998). First-principles study of high-pressure alumina polymorphs. Physical Review B, 57(17), 10363-10369. doi:10.1103/physrevb.57.10363Oganov, A. R., & Ono, S. (2005). The high-pressure phase of alumina and implications for Earth’s D’’ layer. Proceedings of the National Academy of Sciences, 102(31), 10828-10831. doi:10.1073/pnas.0501800102Hama, J., & Suito, K. (2002). The evidence for the occurrence of two successive transitions in Al2O3 from the analysis of Hugoniot data. High Temperatures-High Pressures, 34(3), 323-334. doi:10.1068/htjr033Ono, S., Kikegawa, T., & Ohishi, Y. (2004). High-pressure phase transition of hematite, Fe2O3. Journal of Physics and Chemistry of Solids, 65(8-9), 1527-1530. doi:10.1016/j.jpcs.2003.11.042Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430(6998), 445-448. doi:10.1038/nature02701Vaidya, S. N. (1999). High-pressure high-temperature transitions in nanocrystallineγ Al2O3,γ Fe2O3 and TiO2. Bulletin of Materials Science, 22(3), 287-293. doi:10.1007/bf02749933Mishra, R. S., Lesher, C. E., & Mukherjee, A. K. (1996). High-Pressure Sintering of Nanocrystalline gammaAl2O3. Journal of the American Ceramic Society, 79(11), 2989-2992. doi:10.1111/j.1151-2916.1996.tb08741.xVaidya, S. N., Karunakaran, C., Kamath, R. V., Pillai, K. T., & Vaidya, V. N. (1999). New polymorphs of alumina. High Pressure Research, 16(3), 147-160. doi:10.1080/08957959908200288Vaidya, S. N., Karunakaran, C., Achary, S. N., & Tyagi, A. K. (1999). New polymorphs of alumina: Part II μ and λ alumina. High Pressure Research, 16(4), 265-278. doi:10.1080/08957959908200299Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kro

    La fase del Ibérico final en el asentamiento del Torrelló del Boverot (Almazora, Castellón): dos piezas cerámicas singulares

    Get PDF
    Since the end of 1988, when excavation was resumed at the Torrelló del Boverot site in Almazora (Castellón), large amounts of material —mostly ceramics— have been recovered, dating from the end of the Iberian period, which, chronologically, marked the end of the village's life. This paper discusses two unusual ceramic pieces from this late period, documented during the excavations that took place in 1995, undertaken in the central area of the site. The records obtained in this work matches that of a batch of materials donated to the Museum of Almazora by the amateurs who excavated this village in the mid-1970s.Desde finales de 1988, cuando se retoman las campañas de excavación en el yacimiento del Torrelló del Boverot de Almazora (Castellón), se recuperaron abundantes materiales —fundamentalmente cerámicos— del periodo Ibérico final que cierra cronológicamente la vida del poblado. En este trabajo presentamos dos piezas cerámicas singulares correspondientes a esta fase tardía, documentada a través de la campaña de excavación llevada a cabo en 1995, en la que se trabajó en el área central del asentamiento. El registro obtenido en esta intervención coincide con el proporcionado por un lote de materiales donados al Museo de Almazora por parte de los aficionados que excavaron este poblado a mediados de la década de los setenta
    corecore