66 research outputs found

    Zebrafish, a novel model system to study uremic toxins: The case for the sulfur amino acid lanthionine

    Get PDF
    The non-proteinogenic amino acid lanthionine is a byproduct of hydrogen sulfide biosynthesis: the third endogenous vasodilator gas, after nitric oxide and carbon monoxide. While hydrogen sulfide is decreased in uremic patients on hemodialysis, lanthionine is increased and has been proposed as a new uremic toxin, since it is able to impair hydrogen sulfide production in hepatoma cells. To characterize lanthionine as a uremic toxin, we explored its effects during the early development of the zebrafish (Danio rerio), a widely used model to study the organ and tissue alterations induced by xenobiotics. Lanthionine was employed at concentrations reproducing those previously detected in uremia. Light-induced visual motor response was also studied by means of the DanioVision system. Treatment of zebrafish embryos with lanthionine determined acute phenotypical alterations, on heart organogenesis (disproportion in cardiac chambers), increased heart beating, and arrhythmia. Lanthionine also induced locomotor alterations in zebrafish embryos. Some of these effects could be counteracted by glutathione. Lanthionine exerted acute effects on transsulfuration enzymes and the expression of genes involved in inflammation and metabolic regulation, and modified microRNA expression in a way comparable with some alterations detected in uremia. Lanthionine meets the criteria for classification as a uremic toxin. Zebrafish can be successfully used to explore uremic toxin effects

    Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients.

    Get PDF
    Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine β-synthase and cystathionine γ-lyase in hydrogen sulfide biosynthesis, leading to the formation of two sulfur metabolites, lanthionine and homolanthionine, considered stable indirect biomarkers of its production. Hydrogen sulfide is involved in the modulation of multiple pathophysiological responses. In uremia, we have demonstrated low plasma total hydrogen sulfide levels, due to reduced cystathionine γ-lyase expression. Plasma hydrogen sulfide levels were measured in hemodialysis patients and healthy controls with three different techniques in comparison, allowing to discern the different pools of this gas. The protein-bound (the one thought to be the most active) and acid-labile forms are significantly decreased, while homolanthionine, but especially lanthionine, accumulate in the blood of uremic patients. The hemodialysis regimen plays a role in determining sulfur compounds levels, and lanthionine is partially removed by a single dialysis session. Lanthionine inhibits hydrogen sulfide production in cell cultures under conditions comparable to in vivo ones. We therefore propose that lanthionine is a novel uremic toxin. The possible role of high lanthionine as a contributor to the genesis of hyperhomocysteinemia in uremia is discusse

    Dysregulation of principal cell miRNAs facilitates epigenetic regulation of AQP2 and results in nephrogenic diabetes insipidus

    Get PDF
    Background MicroRNAs (miRNAs), formed by cleavage of pre-microRNA by the endoribonuclease Dicer, are critical modulators of cell function by post-transcriptionally regulating gene expression. Methods Selective ablation of Dicer in AQP2-expressing cells (DicerAQP2Cre1 mice) was used to investigate the role of miRNAs in the kidney collecting duct of mice. Results The mice had severe polyuria and nephrogenic diabetes insipidus, potentially due to greatly reduced AQP2 and AQP4 levels. Although epithelial sodium channel levels were decreased in cortex and increased in inner medulla, amiloride-sensitive sodium reabsorption was equivalent in DicerAQP2Cre1 mice and controls. Small-RNA sequencing and proteomic analysis revealed 31 and 178 significantly regulated miRNAs and proteins, respectively. Integrated bioinformatic analysis of the miRNAome and proteome suggested alterations in the epigenetic machinery and various transcription factors regulating AQP2 expression in DicerAQP2Cre1 mice. The expression profile and function of three miRNAs (miR-7688-5p, miR-8114, and miR-409-3p) whose predicted targets were involved in epigenetic control (Phf2, Kdm5c, and Kdm4a) or transcriptional regulation (GATA3, GATA2, and ELF3) of AQP2 were validated. Luciferase assays could not demonstrate direct interaction of AQP2 or the three potential transcription factors with miR-7688-5p, miR-8114, and miR-409-3p. However, transfection of respective miRNA mimics reduced AQP2 expression. Chromatin immunoprecipitation assays demonstrated decreased Phf2 and significantly increased Kdm5c interactions at the Aqp2 gene promoter in DicerAQP2Cre1 mice, resulting in decreased RNA Pol II association. Conclusions Novel evidence indicates miRNA-mediated epigenetic regulation of AQP2 expression

    Diagnosis and management of Bartter syndrome: executive summary of the consensus and recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders

    Get PDF
    Bartter syndrome is a rare inherited salt-losing renal tubular disorder characterized by secondary hyperaldosteronism with hypokalemic and hypochloremic metabolic alkalosis and low to normal blood pressure. The primary pathogenic mechanism is defective salt reabsorption predominantly in the thick ascending limb of the loop of Henle. There is significant variability in the clinical expression of the disease, which is genetically heterogenous with 5 different genes described to date. Despite considerable phenotypic overlap, correlations of specific clinical characteristics with the underlying molecular defects have been demonstrated, generating gene-specific phenotypes. As with many other rare disease conditions, there is a paucity of clinical studies that could guide diagnosis and therapeutic interventions. In this expert consensus document, the authors have summarized the currently available knowledge and propose clinical indicators to assess and improve quality of care

    Cognitive disorders in patients with chronic kidney disease: Approaches to prevention and treatment

    Get PDF
    Background: Cognitive impairment is common in patients with chronic kidney disease (CKD), and early intervention may prevent the progression of this condition. Methods: Here, we review interventions for the complications of CKD (anemia, secondary hyperparathyroidism, metabolic acidosis, harmful effects of dialysis, the accumulation of uremic toxins) and for prevention of vascular events, interventions that may potentially be protective against cognitive impairment. Furthermore, we discuss nonpharmacological and pharmacological methods to prevent cognitive impairment and/or minimize the latter's impact on CKD patients' daily lives. Results: A particular attention on kidney function assessment is suggested during work-up for cognitive impairment. Different approaches are promising to reduce cognitive burden in patients with CKD but the availabe dedicated data are scarce. Conclusions: There is a need for studies assessing the effect of interventions on the cognitive function of patients with CKD

    Treatment and long-term outcome in primary nephrogenic diabetes insipidus

    Get PDF
    Background: Primary nephrogenic diabetes insipidus (NDI) is a rare disorder and little is known about treatment practices and long-term outcome. Methods: Paediatric and adult nephrologists contacted through European professional organizations entered data in an online form. Results: Data were collected on 315 patients (22 countries, male 84%, adults 35%). Mutation testing had been performed in 270 (86%); pathogenic variants were identified in 258 (96%). The median (range) age at diagnosis was 0.6 (0.0–60) years and at last follow-up 14.0 (0.1–70) years. In adults, height was normal with a mean (standard deviation) score of −0.39 (±1.0), yet there was increased prevalence of obesity (body mass index >30 kg/m2; 41% versus 16% European average; P < 0.001). There was also increased prevalence of chronic kidney disease (CKD) Stage ≥2 in children (32%) and adults (48%). Evidence of flow uropathy was present in 38%. A higher proportion of children than adults (85% versus 54%; P < 0.001) received medications to reduce urine output. Patients ≥25 years were less likely to have a university degree than the European average (21% versus 35%; P = 0.003) but full-time employment was similar. Mental health problems, predominantly attention-deficit hyperactivity disorder (16%), were reported in 36% of patients. Conclusion: This large NDI cohort shows an overall favourable outcome with normal adult height and only mild to moderate CKD in most. Yet, while full-time employment was similar to the European average, educational achievement was lower, and more than half had urological and/or mental health problems
    • …
    corecore