385 research outputs found

    Major Galaxy Mergers Only Trigger the Most Luminous AGN

    Full text link
    Using multiwavelength surveys of active galactic nuclei across a wide range of bolometric luminosities (10^{43}<L_{bol}(erg/s<5x10^{46}) and redshifts (0<z<3), we find a strong, redshift-independent correlation between the AGN luminosity and the fraction of host galaxies undergoing a major merger. That is, only the most luminous AGN phases are connected to major mergers, while less luminous AGN appear to be driven by secular processes. Combining this trend with AGN luminosity functions to assess the overall cosmic growth of black holes, we find that ~50% by mass is associated with major mergers, while only 10% of AGN by number, the most luminous, are connected to these violent events. Our results suggest that to reach the highest AGN luminosities -where the most massive black holes accreted the bulk of their mass - a major merger appears to be required. The luminosity dependence of the fraction of AGN triggered by major mergers can successfully explain why the observed scatter in the M-\sigma relation for elliptical galaxies is significantly lower than in spirals. The lack of a significant redshift dependence of the L_{bol}-f_{merger} relation suggests that downsizing, i.e., the general decline in AGN and star formation activity with decreasing redshift, is driven by a decline in the frequency of major mergers combined with a decrease in the availability of gas at lower redshifts.Comment: Accepted for publication by Astrophysical Journal Letters, 6 pages in emulateapj format, 3 figure

    Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars

    Full text link
    Despite observed strong correlations between central supermassive black holes (SMBHs) and star-formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily-obscured to unobscured quasars as a function of cosmic epoch up to z~3, and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represent two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily-obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH and coeval star formation.Comment: Accepted for publication in Science. Published by Science Express on March 25th. 17 pages, 5 figures, including supplemental online materia

    Obscured GOODS AGN and Their Host Galaxies at z < 1.25: The Slow Black Hole Growth Phase

    Full text link
    We compute black hole masses and bolometric luminosities for 87 obscured AGN in the redshift range 0.25 < z < 1.25, selected from the GOODS deep multi-wavelength survey fields via their X-ray emission. We fit the optical images and obtain morphological parameters for the host galaxy, separating the galaxy from its central point source, thereby obtaining a four-band optical SED for each active nucleus. We calculate bolometric luminosities for these AGN by reddening a normalized mean SED of GOODS broad-line AGN to match the observed central point-source SED of each obscured AGN. This estimate of Lbol has a smaller spread than simple bolometric corrections to the X-ray luminosity or direct integration of the observed multi-wavelength SED, suggesting it is a better measure. We estimate central black hole masses from the bulge luminosities. The black hole masses span a wide range, 7 x 10^6 M_sun to 6 x 10^9 M_sun; the median black hole mass is 5 x 10^8 M_sun. The majority of these AGN have L/L_Edd < 0.01, and we detect no significant evolution of the mean Eddington ratio to z = 1.25. This implies that the bulk of black hole growth in these obscured AGN must have occurred at z > 1 and that we are observing these AGN in a slow- or no-growth state.Comment: Accepted to ApJ; 17 pages, 10 figures, 2 tables; Updated version has 1 corrected referenc

    A massive, distant proto-cluster at z=2.47 caught in a phase of rapid formation?

    Get PDF
    Numerical simulations of cosmological structure formation show that the Universe's most massive clusters, and the galaxies living in those clusters, assemble rapidly at early times (2.5 < z < 4). While more than twenty proto-clusters have been observed at z > 2 based on associations of 5-40 galaxies around rare sources, the observational evidence for rapid cluster formation is weak. Here we report observations of an asymmetric, filamentary structure at z = 2.47 containing seven starbursting, submillimeter-luminous galaxies and five additional AGN within a comoving volume of 15000 Mpc3^{3}. As the expected lifetime of both the luminous AGN and starburst phase of a galaxy is ~100 Myr, we conclude that these sources were likely triggered in rapid succession by environmental factors, or, alternatively, the duration of these cosmologically rare phenomena is much longer than prior direct measurements suggest. The stellar mass already built up in the structure is ∼1012M⊙\sim10^{12}M_{\odot} and we estimate that the cluster mass will exceed that of the Coma supercluster at z∼0z \sim 0. The filamentary structure is in line with hierarchical growth simulations which predict that the peak of cluster activity occurs rapidly at z > 2.Comment: 7 pages, 3 figures, 2 tables, accepted in ApJL (small revisions from previous version

    The fraction of AGN in major merger galaxies and its luminosity dependence

    Full text link
    We use a phenomenological model which connects the galaxy and AGN populations to investigate the process of AGN triggering through major galaxy mergers at z~0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGN hosted by merger galaxies relative to the total number of AGN increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ~10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGN among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ~10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.Comment: 11 pages, 3 figues, accepted for publication in MNRA

    Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured

    Get PDF
    Mergers of galaxies are thought to cause significant gas inflows to the inner parsecs, which can activate rapid accretion onto supermassive black holes (SMBHs), giving rise to Active Galactic Nuclei (AGN). During a significant fraction of this process, SMBHs are predicted to be enshrouded by gas and dust. Studying 52 galactic nuclei in infrared-selected local Luminous and Ultra-luminous infrared galaxies in different merger stages in the hard X-ray band, where radiation is less affected by absorption, we find that the amount of material around SMBHs increases during the last phases of the merger. We find that the fraction of Compton-thick (CT, N H≥1024 cm−2N_{\rm\,H}\geq 10^{24}\rm\,cm^{-2}) AGN in late merger galaxies is higher (f CT=65−13+12%f_{\rm\,CT}=65^{+12}_{-13}\%) than in local hard X-ray selected AGN (f CT=27±4%f_{\rm\,CT}=27\pm 4\%), and that obscuration reaches its maximum when the nuclei of the two merging galaxies are at a projected distance of D12≃0.4−10.8D_{12}\simeq0.4-10.8 kiloparsecs (f CT=77−17+13%f_{\rm\,CT}=77_{-17}^{+13}\%). We also find that all AGN of our sample in late merger galaxies have N H>1023 cm−2N_{\rm\,H}> 10^{23}\rm\,cm^{-2}, which implies that the obscuring material covers 95−8+4%95^{+4}_{-8}\% of the X-ray source. These observations show that the material is most effectively funnelled from the galactic scale to the inner tens of parsecs during the late stages of galaxy mergers, and that the close environment of SMBHs in advanced mergers is richer in gas and dust with respect to that of SMBHs in isolated galaxies, and cannot be explained by the classical AGN unification model in which the torus is responsible for the obscuration.Comment: Final version matching the article published in MNRAS - 30 pages, 16 figure

    IC 751: a new changing-look AGN discovered by NuSTAR

    Get PDF
    We present the results of five NuSTAR observations of the type 2 active galactic nucleus (AGN) in IC 751, three of which were performed simultaneously with XMM-Newton or Swift/XRT. We find that the nuclear X-ray source underwent a clear transition from a Compton-thick (N H≃2×1024 cm−2N_{\rm\,H}\simeq 2\times 10^{24}\rm\,cm^{-2}) to a Compton-thin (N H≃4×1023 cm−2N_{\rm\,H}\simeq 4\times 10^{23}\rm\,cm^{-2}) state on timescales of ≲3\lesssim 3 months, which makes IC 751 the first changing-look AGN discovered by NuSTAR. Changes of the line-of-sight column density at a ∼2σ\sim2\sigma level are also found on a time-scale of ∼48\sim 48 hours (ΔN H∼1023 cm−2\Delta N_{\rm\,H}\sim 10^{23}\rm\,cm^{-2}). From the lack of spectral variability on timescales of ∼100\sim 100 ks we infer that the varying absorber is located beyond the emission-weighted average radius of the broad-line region, and could therefore be related either to the external part of the broad-line region or a clumpy molecular torus. By adopting a physical torus X-ray spectral model, we are able to disentangle the column density of the non-varying absorber (N H∼3.8×1023 cm−2N_{\rm\,H}\sim 3.8\times 10^{23}\rm\,cm^{-2}) from that of the varying clouds [N H∼(1−150)×1022 cm−2N_{\rm\,H}\sim(1-150)\times10^{22}\rm\,cm^{-2}], and to constrain that of the material responsible for the reprocessed X-ray radiation (N H∼6×1024 cm−2N_{\rm\,H} \sim 6 \times 10^{24}\rm\,cm^{-2}). We find evidence of significant intrinsic X-ray variability, with the flux varying by a factor of five on timescales of a few months in the 2-10 and 10-50 keV band.Comment: Accepted for publication in ApJ, 11 pages, 6 figure

    Rest-frame Optical Emission Lines in Far-Infrared Selected Galaxies at z<1.7 from the FMOS-COSMOS Survey

    Get PDF
    We have used FMOS on Subaru to obtain near-infrared spectroscopy of 123 far-infrared selected galaxies in COSMOS and obtain the key rest-frame optical emission lines. This is the largest sample of infrared galaxies with near-infrared spectroscopy at these redshifts. The far-infrared selection results in a sample of galaxies that are massive systems that span a range of metallicities in comparison with previous optically selected surveys, and thus has a higher AGN fraction and better samples the AGN branch. We establish the presence of AGN and starbursts in this sample of (U)LIRGs selected as Herschel-PACS and Spitzer-MIPS detections in two redshift bins (z~0.7 and z~1.5) and test the redshift dependence of diagnostics used to separate AGN from star-formation dominated galaxies. In addition, we construct a low redshift (z~0.1) comparison sample of infrared selected galaxies and find that the evolution from z~1.5 to today is consistent with an evolving AGN selection line and a range of ISM conditions and metallicities from the models of Kewley et al. (2013b). We find that a large fraction of (U)LIRGs are BPT-selected AGN using their new, redshift-dependent classification line. We compare the position of known X-ray detected AGN (67 in total) with the BPT selection and find that the new classification line accurately selects most of these objects (> 70%). Furthermore, we identify 35 new (likely obscured) AGN not selected as such by their X-ray emission. Our results have direct implications for AGN selection at higher redshift with either current (MOSFIRE, KMOS) or future (PFS, MOONS) spectroscopic efforts with near-infrared spectral coverage.Comment: 7 pages, 3 figures, 2 tables. Accepted for publication in The Astrophysical Journal Letter

    Inferring Compton-thick AGN candidates at z>2 with Chandra using the >8 keV restframe spectral curvature

    Get PDF
    To fully understand cosmic black hole growth we need to constrain the population of heavily obscured active galactic nuclei (AGN) at the peak of cosmic black hole growth (z∼z\sim1-3). Sources with obscuring column densities higher than 1024\mathrm{10^{24}} atoms cm−2\mathrm{cm^{-2}}, called Compton-thick (CT) AGN, can be identified by excess X-ray emission at ∼\sim20-30 keV, called the "Compton hump". We apply the recently developed Spectral Curvature (SC) method to high-redshift AGN (2<z<5) detected with Chandra. This method parametrizes the characteristic "Compton hump" feature cosmologically redshifted into the X-ray band at observed energies <10 keV. We find good agreement in CT AGN found using the SC method and bright sources fit using their full spectrum with X-ray spectroscopy. In the Chandra deep field south, we measure a CT fraction of 17−11+19%\mathrm{17^{+19}_{-11}\%} (3/17) for sources with observed luminosity >5×1043\mathrm{>5\times 10^{43}} erg s−1\mathrm{s^{-1}}. In the Cosmological evolution survey (COSMOS), we find an observed CT fraction of 15−3+4%\mathrm{15^{+4}_{-3}\%} (40/272) or 32±11%\mathrm{32\pm11 \%} when corrected for the survey sensitivity. When comparing to low redshift AGN with similar X-ray luminosities, our results imply the CT AGN fraction is consistent with having no redshift evolution. Finally, we provide SC equations that can be used to find high-redshift CT AGN (z>1) for current (XMM-Newton) and future (eROSITA and ATHENA) X-ray missions.Comment: 10 pages, 8 figure
    • …
    corecore