37 research outputs found

    Holocene vegetation dynamics of circum-Arctic permafrost peatlands

    Get PDF
    Vegetation shifts in circum-Arctic permafrost peatlands drive feedbacks with important consequences for peatland carbon budgets and the extent of permafrost thaw under changing climate. Recent shrub expansion across Arctic tundra environments has led to an increase in above-ground biomass, but the long-term spatiotemporal dynamics of shrub and tree growth in circum-Arctic peatlands remain unquantified. We investigate changes in peatland vegetation composition during the Holocene using previously-published plant macrofossil records from 76 sites across the circum-Arctic permafrost zone. In particular, we assess evidence for peatland shrubification at the continental scale. We identify increasing abundance of woody vegetation in circum-Arctic peatlands from ∼8000 years BP to present, coinciding with declining herbaceous vegetation and widespread Sphagnum expansion. Ecosystem shifts varied between regions and present-day permafrost zones, with late-Holocene shrubification most pronounced where permafrost coverage is presently discontinuous and sporadic. After ∼600 years BP, we find a proliferation of non-Sphagnum mosses in Fennoscandia and across the present-day continuous permafrost zone; and rapid expansion of Sphagnum in regions of discontinuous and isolated permafrost as expected following widespread fen-bog succession, which coincided with declining woody vegetation in eastern and western Canada. Since ∼200 years BP, both shrub expansion and decline were identified at different sites across the pan-Arctic, highlighting the complex ecological responses of circum-Arctic peatlands to post-industrial climate warming and permafrost degradation. Our results suggest that shrubification of circum-Arctic peatlands has primarily occurred alongside surface drying, resulting from Holocene climate shifts, autogenic peat accumulation, and permafrost aggradation. Future shrubification of circum-Arctic peatlands under 21st century climate change will likely be spatially heterogeneous, and be most prevalent where dry microforms persist

    Limited contribution of permafrost carbon to methane release from thawing peatlands

    Get PDF
    Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands

    Effects of permafrost aggradation on peat properties as determined from a pan-arctic synthesis of plant macrofossils

    Get PDF
    ©2015. American Geophysical Union. All Rights Reserved.This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2015JG003061Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m-2 y-1) than in permafrost-free bogs (18 g C m-2 y-1), and were lowest in boreal permafrost peatlands (14 g C m-2 y-1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and re-aggradation. Using data synthesis, we've identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.National Science FoundationUSGS Climate and Land-useChange Research and Development ProgramAcademy of FinlandRoyal Swedish Academy of ScienceYmer-80, Knut & Alice Wallenberg and Ahlmann Foundation

    Methane origins

    No full text

    A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback.

    No full text
    We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of -14 to -19 Pg C °C(-1) on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming

    Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

    No full text
    PublishedIncreasing temperatures in northern high latitudes are causing permafrost to thaw1, making large amounts of previously frozen organic matter vulnerable to microbial decomposition2. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions3, 4 that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear5, 6. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 °C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH4 for a given amount of C.Financial support was provided by the National Science Foundation Vulnerability of Permafrost Carbon Research Coordination Network Grant no. 955713 with continued support from the National Science Foundation Research Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change Grant no. 1331083. Author contributions were also supported by grants to individuals: Department of Energy, Office of Biological and Environmental Research, Terrestrial Ecosystem Science (TES) Program (DE-SC0006982) to E.A.G.S.; UK Natural Environment Research Council funding to I.P.H. and C.E.-A. (NE/K000179/1); German Research Foundation (DFG, Excellence cluster CliSAP) to C.K.; Department of Ecosystem Biology, Grant agency of South Bohemian University, GAJU project no. 146/2013/P and GAJU project no. 146/2013/D to H.S.; National Science Foundation Office of Polar Programs (1312402) to S.M.N.; National Science Foundation Division of Environmental Biology (0423385) and National Science Foundation Division of Environmental Biology (1026843), both to the Marine Biological Laboratory, Woods Hole, Massachusetts; additionally, the Next-Generation Ecosystem Experiments in the Arctic (NGEE Arctic) project is supported by the Biological and Environmental Research programme in the US Department of Energy (DOE) Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under Contract no. DE-AC05-00OR22725. Support for C.B. came from European Union (FP-7-ENV-2011, project PAGE21, contract no. 282700), Academy of Finland (project CryoN, decision no. 132 045), Academy of Finland (project COUP, decision no. 291691; part of the European Union Joint Programming Initiative, JPI Climate), strategic funding of the University of Eastern Finland (project FiWER) and Maj and Tor Nessling Foundation and for P.J.M. from Nordic Center of Excellence (project DeFROST)

    Ultrasound Enhanced Delivery of Molecular Imaging and Therapeutic Agents in Alzheimer's Disease Mouse Models

    Get PDF
    Alzheimer's disease is a neurodegenerative disorder typified by the accumulation of a small protein, beta-amyloid, which aggregates and is the primary component of amyloid plaques. Many new therapeutic and diagnostic agents for reducing amyloid plaques have limited efficacy in vivo because of poor transport across the blood-brain barrier. Here we demonstrate that low-intensity focused ultrasound with a microbubble contrast agent may be used to transiently disrupt the blood-brain barrier, allowing non-invasive, localized delivery of imaging fluorophores and immunotherapeutics directly to amyloid plaques. We administered intravenous Trypan blue, an amyloid staining red fluorophore, and anti-amyloid antibodies, concurrently with focused ultrasound therapy in plaque-bearing, transgenic mouse models of Alzheimer's disease with amyloid pathology. MRI guidance permitted selective treatment and monitoring of plaque-heavy anatomical regions, such as the hippocampus. Treated brain regions exhibited 16.5±5.4-fold increase in Trypan blue fluorescence and 2.7±1.2-fold increase in anti-amyloid antibodies that localized to amyloid plaques. Ultrasound-enhanced delivery was consistently reproduced in two different transgenic strains (APPswe:PSEN1dE9, PDAPP), across a large age range (9–26 months), with and without MR guidance, and with little or no tissue damage. Ultrasound-mediated, transient blood-brain barrier disruption allows the delivery of both therapeutic and molecular imaging agents in Alzheimer's mouse models, which should aid pre-clinical drug screening and imaging probe development. Furthermore, this technique may be used to deliver a wide variety of small and large molecules to the brain for imaging and therapy in other neurodegenerative diseases.National Institutes of Health (U.S.) (EB000768, EB000705, AG026240, and U41RR019703
    corecore