542 research outputs found

    Geometry shapes evolution of early multicellularity

    Full text link
    Organisms have increased in complexity through a series of major evolutionary transitions, in which formerly autonomous entities become parts of a novel higher-level entity. One intriguing feature of the higher-level entity after some major transitions is a division of reproductive labor among its lower-level units. Although it can have clear benefits once established, it is unknown how such reproductive division of labor originates. We consider a recent evolution experiment on the yeast Saccharomyces cerevisiae as a unique platform to address the issue of reproductive differentiation during an evolutionary transition in individuality. In the experiment, independent yeast lineages evolved a multicellular "snowflake-like'' cluster form in response to gravity selection. Shortly after the evolution of clusters, the yeast evolved higher rates of cell death. While cell death enables clusters to split apart and form new groups, it also reduces their performance in the face of gravity selection. To understand the selective value of increased cell death, we create a mathematical model of the cellular arrangement within snowflake yeast clusters. The model reveals that the mechanism of cell death and the geometry of the snowflake interact in complex, evolutionarily important ways. We find that the organization of snowflake yeast imposes powerful limitations on the available space for new cell growth. By dying more frequently, cells in clusters avoid encountering space limitations, and, paradoxically, reach higher numbers. In addition, selection for particular group sizes can explain the increased rate of apoptosis both in terms of total cell number and total numbers of collectives. Thus, by considering the geometry of a primitive multicellular organism we can gain insight into the initial emergence of reproductive division of labor during an evolutionary transition in individuality.Comment: 7 figure

    My Grandfather\u27s Hand

    Get PDF

    Recommendations for a service framework to access astronomical archives

    Get PDF
    There are a large number of astronomical archives and catalogs on-line for network access, with many different user interfaces and features. Some systems are moving towards distributed access, supplying users with client software for their home sites which connects to servers at the archive site. Many of the issues involved in defining a standard framework of services that archive/catalog suppliers can use to achieve a basic level of interoperability are described. Such a framework would simplify the development of client and server programs to access the wide variety of astronomical archive systems. The primary services that are supplied by current systems include: catalog browsing, dataset retrieval, name resolution, and data analysis. The following issues (and probably more) need to be considered in establishing a standard set of client/server interfaces and protocols: Archive Access - dataset retrieval, delivery, file formats, data browsing, analysis, etc.; Catalog Access - database management systems, query languages, data formats, synchronous/asynchronous mode of operation, etc.; Interoperability - transaction/message protocols, distributed processing mechanisms (DCE, ONC/SunRPC, etc), networking protocols, etc.; Security - user registration, authorization/authentication mechanisms, etc.; Service Directory - service registration, lookup, port/task mapping, parameters, etc.; Software - public vs proprietary, client/server software, standard interfaces to client/server functions, software distribution, operating system portability, data portability, etc. Several archive/catalog groups, notably the Astrophysics Data System (ADS), are already working in many of these areas. In the process of developing StarView, which is the user interface to the Space Telescope Data Archive and Distribution Service (ST-DADS), these issues and the work of others were analyzed. A framework of standard interfaces for accessing services on any archive system which would benefit archive user and supplier alike is proposed

    Adaptive evolution and inherent tolerance to extreme thermal environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When introduced to novel environments, the ability for a species to survive and rapidly proliferate corresponds with its adaptive potential. Of the many factors that can yield an environment inhospitable to foreign species, phenotypic response to variation in the thermal climate has been observed within a wide variety of species. Experimental evolution studies using bacteriophage model systems have been able to elucidate mutations, which may correspond with the ability of phage to survive modest increases/decreases in the temperature of their environment.</p> <p>Results</p> <p>Phage ΦX174 was subjected to both elevated (50°C) and extreme (70°C+) temperatures for anywhere from a few hours to days. While no decline in the phage's fitness was detected when it was exposed to 50°C for a few hours, more extreme temperatures significantly impaired the phage; isolates that survived these heat treatments included the acquisition of several mutations within structural genes. As was expected, long-term treatment of elevated and extreme temperatures, ranging from 50-75°C, reduced the survival rate even more. Isolates which survived the initial treatment at 70°C for 24 or 48 hours exhibited a significantly greater tolerance to subsequent heat treatments.</p> <p>Conclusions</p> <p>Using the model organism ΦX174, we have been able to study adaptive evolution on the molecular level under extreme thermal changes in the environment, which to-date had yet to be thoroughly examined. Under both acute and extended thermal selection, we were able to observe mutations that occurred in response to excessive external pressures independent of concurrently evolving hosts. Even though its host cannot tolerate extreme temperatures such as the ones tested here, this study confirms that ΦX174 is capable of survival.</p

    Evaluation of the Relationship Between Employee Engagement and Student Engagement and Student Retention at a Large, Private, Not-for-Profit Research University

    Get PDF
    Research on employee engagement revealed a positive correlation between employee engagement and positive business outcomes. Within a university setting, positive business outcomes can be measured and demonstrated through higher-than-benchmarked employee engagement, student engagement, and student retention. To effect these desired outcomes, the literature revealed the need for employees to work together; to be fully invested in their work; and to advance the university’s mission, vision, and core values towards positive student success outcomes. There is a full complement of research regarding employee engagement, student retention, and student engagement as specific topics within the literature. A deficiency in the literature existed concerning the correlation of these topics as one body of research. This study examined these interrelated topics within a large, private, not-for-profit research university setting. Principal components analysis and logistical regression were used to determine the relationship between student engagement and student retention, the relationship between employee engagement and student retention, and to determine if employee engagement and student engagement predict student retention. Study results suggested that student engagement alone was not a statistically significant factor in predicting retention at the research setting. However, employee engagement was associated with student retention at the university level. When analyzed together, both student engagement and employee engagement were revealed as a statistically significant predictor of student retention at the university level

    Robust inference of genetic architecture in mapping studies.

    Get PDF
    The genetic architecture of a trait usually refers to the number and magnitude of loci that explain phenotypic variation. A description of genetic architecture can help us to understand how genetic variation is maintained, how traits have evolved and how phenotypes might respond to selection. However, linkage mapping and association studies can suffer from problems of bias, especially when conducted in natural populations where the opportunity to perform studies with very large sample sizes can be limited. In this issue of Molecular Ecology, Li and colleagues perform an association study of brain traits in ninespine sticklebacks Pungitius pungitius. They use a sophisticated approach that models all of the genotyped markers simultaneously; conventional approaches fit each marker individually. Although the single-marker and multi-marker approaches find similar regions of the genome that explain phenotypic variation, the overall conclusions about trait architecture are somewhat different, depending on the approach used. Single-marker methods identify regions that explain quite large proportions of genetic variation, whereas the multi-marker approach suggests the traits are far more polygenic. Simulations suggest the multi-marker approach is robust. This study highlights how molecular quantitative genetics in wild populations can be used to address hypothesis-driven questions, without making unrealistic assumptions about effect sizes of individual quantitative trait loci

    Ecological perspectives on synthetic biology: insights from microbial population biology

    Get PDF
    The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems

    The Evolution of Molecular Compatibility between Bacteriophage ΦX174 and its Host

    Get PDF
    Viruses rely upon their hosts for biosynthesis of viral RNA, DNA and protein. This dependency frequently engenders strong selection for virus genome compatibility with potential hosts, appropriate gene regulation and expression necessary for a successful infection. While bioinformatic studies have shown strong correlations between codon usage in viral and host genomes, the selective factors by which this compatibility evolves remain a matter of conjecture. Engineered to include codons with a lesser usage and/or tRNA abundance within the host, three different attenuated strains of the bacterial virus ФX174 were created and propagated via serial transfers. Molecular sequence data indicate that biosynthetic compatibility was recovered rapidly. Extensive computational simulations were performed to assess the role of mutational biases as well as selection for translational efficiency in the engineered phage. Using bacteriophage as a model system, we can begin to unravel the evolutionary processes shaping codon compatibility between viruses and their host
    corecore