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 5 

Due to the development of next-generation sequencing and related tools, the feasibility of gene 6 

mapping studies in wild populations has improved dramatically. However, phenotypic data collection 7 

remains challenging and sample sizes are typically orders of magnitude smaller than are seen in 8 

genome wide association studies (GWAS) of human populations, where hundreds of thousands of 9 

people may be screened (Wood et al. ). Consequently, the power to detect quantitative trait loci 10 

(QTL) remains modest, unless the focal trait is segregating for genes of major effect. Worse still, small 11 

sample sizes result in crude estimates of effect sizes; those that are mostly severely overestimated, will 12 

be the ones most likely to reach statistical significance - the well-ŬŶŽǁŶ ͚BĞĂǀŝƐ EĨĨĞĐƚ͛ (Beavis 1994)13 

This makes inference from mapping studies very problematic. Does a significant peak with a large effect 14 

on phenotypic variation represent a true hit, with the trait being determined by relative  few genes of 15 

ůĂƌŐĞ ĞĨĨĞĐƚ ;ĂŶ ͚ŽůŝŐŽŐĞŶŝĐ͛ ĂƌĐŚŝƚĞĐƚƵƌĞͿ͍ Oƌ ĚŽĞƐ ƚŚĞ ƉĞĂŬ ƐŝŵƉůǇ ƌĞƉƌĞƐĞŶƚ ĂŶ ƵƉǁĂƌĚůǇ ďŝĂƐĞĚ 16 

estimate and a false positive QTL? Without replication, it is very hard to know which scenario is true. 17 

Similarly, interpretation of a null result (no significant QTL) can be problematic. Does this mean that the 18 

study was underpowered to pick up any medium-large effect loci that are present? Or does the trait 19 

have a genuinely polygenic architecture, caused by many loci of small effect, each of which is 20 

undetectable in that particular experiment? Iƚ͛Ɛ ŶŽƚ ŚĂƌĚ ƚŽ ƐĞĞ ǁŚǇ ƚŚĞƌĞ ƌĞŵĂŝŶƐ ƐĐĞƉƚŝĐŝƐŵ ĂďŽƵƚ ƚŚĞ 21 

value of gene mapping studies to evolutionary research (Rockman 2012 Travisano & Shaw 2013). In 22 

this issue of Molecular Ecology,  et al. (2017) describe a gene mapping experiment that goes some 23 

way to addressing the issues of low power and inflated effect size that have plagued previous studies. 24 

The authors have conducted a mapping study of brain traits in nine-spined sticklebacks Pungitius 25 

pungitius to tackle two alternative hypotheses about the genetic architecture of brain morphology. At 26 

face value, the study could be seen as a relatively standard GWAS, albeit with an impressive number of 27 

markers for what is not a classical model organism. However, scratch beneath the surface a little, and it 28 

becomes clear that some sophisticated analytical approaches have been used to try to understand trait 29 

architecture in a more rigorous way than is typical. 30 

 31 

In the study Li and colleagues used an F2 mapping population, derived by crossing a marine female 32 

from the Baltic Sea with a freshwater male from a pond in Northern Finland. There were 239 33 

phenotyped and genotyped F2 individuals, and a little over 15,000 SNPs obtained from genotyping-34 

by-sequencing, which were mapped to 21 linkage groups (the known number of chromosomes in this 35 

species). The authors measured the volume of five different parts of the brain, and were interested in 36 

comparing two alternative hypotheses about the genetic architecture of brain traits. Under the 37 

mosaic model each brain component has a distinct genetic architecture, and it is free to evolve 38 

without genetic constraint from other brain components.  The alternative idea, the concerted model, 39 

posits that brain component evolution is constrained, perhaps due to a common genetic architecture 40 

influencing the different parts. Recognising that the experimental design was exactly the kind where 41 

QTL of major effect could be identified spuriously in a standard linkage mapping (or GWAS) 42 

experiment, the authors utilised an approach known as de-biased Least Absolute Shrinkage and 43 

Selection Operator (LASSO) mapping (Van de Geer et al. 2014; Zhang & Zhang 2014). De-biased LASSO 44 



2 

 

has not been widely employed in gene-mapping studies but it has several advantageous properties. 45 

Perhaps the most obviously different feature is that multiple markers are modelled simultaneously. 46 

This reduces the risk of effect size overestimation, and can also lead to an increase in power. It also 47 

facilitates the estimation of heritability by summing the effect of SNPs fitted in the model. Thus, Li et 48 

al. (2017) had two main aims. The empirical goal was to understand the genetic architecture of brain 49 

traits and evaluate whether the mosaic or concerted model was more plausible. The methodological 50 

goal was to compare different mapping approaches using both real and simulated data, to establish 51 

whether de-biased LASSO gave more reliable parameter estimates than approaches that fit single 52 

markers consecutively. 53 

 54 

For many of the traits that Li and colleagues studied, they found genomic regions that explained 55 

significant genetic variation, even at a stringent genomewide significance threshold. There was very 56 

little between-trait overlap in QTL locations, so the data were consistent with the mosaic model 57 

(different genomic regions affecting different brain components). When running single SNP (i.e. 58 

conventional) analyses, there were frequently numerous, tightly-linked significant SNPs, and their 59 

estimated effect sizes were frequently 5-10% of the overall trait variation. These would be regarded 60 

as genes of reasonably large effect. The multi-marker (i.e. de-biased LASSO) approach usually 61 

identified the same genomic regions. However, the effect sizes were typically much smaller - 1% or 62 

less of the phenotypic variation. The multimarker analyses could also measure the effect of each 63 

linkage group on trait variation. Summing these effects across linkage groups provided estimates of 64 

trait heritability; depending on the trait these ranged from ~0.10 - ~0.45. Some linkage groups 65 

contributed disproportionately to additive genetic variation, but not in a way that supported the 66 

concerted model (which would have predicted that the same linkage group would contribute to 67 

different traits). Overall, the data suggest that brain traits are moderately heritable in this cross, and 68 

that the trait architecture is consistent with the mosaic model of brain evolution. One slight caveat is 69 

that the experimental cross was derived from just a single pair of fish, and we are largely ignorant of 70 

how much genetic variation is segregating within versus between marine and freshwater populations. 71 

Other experimental designs may have yielded quite different conclusions. 72 

 73 

How well does the multi-marker de-biased LASSO method perform? The simulations, which are 74 

presented in the supplementary material, explored both an oligogenic and a polygenic scenario. 75 

Unsurprisingly, the single-locus approach had a high false positive rate, and a lower power to detect 76 

true positives than de-biased LASSO (although neither approach had high power when the simulated 77 

QTL were small). Effect size estimation of individual QTL was actually greatly downward-biased with 78 

de-biased LASSO and tended to be upwardly biased with single-locus estimates. Encouragingly 79 

though, de-biased LASSO provided accurate estimates of overall trait heritability, regardless of trait 80 

architecture. Single-locus approaches fail in this regard, especially when the true architecture is 81 

polygenic. It may well be the case that the downward bias of de-biased LASSO effect size estimates 82 

can be rectified by summing the effects of linked SNPs in the region, or by first pruning the marker 83 

data, so that retained SNPs are not in high linkage disequilibrium. The F2 design used by Li and 84 

colleagues, probably causes linked SNPs to be in strong linkage disequilibrium. More generally, de-85 

biased LASSO is one of several recently introduced approaches that fit multiple markers 86 

simultaneously (Moser et al. 2015; Zhou et al. 2013). These methods are beginning to be adopted in 87 

evolutionary / ecological studies (Comeault et al. 2015) and they are attractive for several reasons. 88 

First, they facilitate a more holistic approach to studying trait architecture, where instead of paying 89 

ƐůĂǀŝƐŚ ĂƚƚĞŶƚŝŽŶ ƚŽ ͚ƐŝŐŶŝĨŝĐĂŶƚ ƉĞĂŬƐ͕͛ QTL effect sizes, heritabilities, individual breeding values and 90 
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whole-chromosome contributions (sensu Yang et al. (2011) to genetic variation can be estimated 91 

simultaneously. Second, they go a long way towards avoiding incorrect inference of an oligogenic trait 92 

architecture that almost inevitably comes about from upwardly-biased single-marker effect size 93 

estimates of true or false QTLs. It remains to be seen which multimarker method performs best, 94 

although benchmarking studies of some approaches do exist (Moser et al. 2015). Perhaps, the most 95 

heartening thing is that ecological genetic mapping studies such as the one by Li and colleagues, are 96 

beginning to mature in a way that hypothesis-driven questions can be addressed without the reliance 97 

on the detection and identification of specific QTL that may or may not true positives. 98 

 99 

 100 
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