1,474 research outputs found
Detection of HC11N in the Cold Dust Cloud TMC-1
Two consecutive rotational transitions of the long cyanopolyyne HC11N,
J=39-38, and J=38-37, have been detected in the cold dust cloud TMC-1 at the
frequencies expected from recent laboratory measurements by Travers et al.
(1996), and at about the expected intensities. The astronomical lines have a
mean radial velocity of 5.8(1) km/s, in good agreement with the shorter
cyanopolyynes HC7N and HC9N observed in this very sharp-lined source [5.82(5)
and 5.83(5) km/s, respectively]. The column density of HC11N is calculated to
be 2.8x10^(11) cm^(-2). The abundance of the cyanopolyynes decreases smoothly
with length to HC11N, the decrement from one to the next being about 6 for the
longer carbon chains.Comment: plain tex 10 pages plus 3 ps fig file
Platelet-activating Factor-receptor agonists generated by chemotherapy thwart host anti-tumor immunity
poster abstractPrevious studies have established that pro-oxidative stressors suppress host immunity due to their ability to generate oxidized glycerophosphocholine (Ox-GPC) lipids with Platelet-activating Factor-receptor (PAF-R) agonist activity. Because many chemotherapeutic agents also induce reactive oxygen species, the present studies were designed to define if chemotherapeutic agents could thwart host anti-tumor immunity against melanoma via PAF-R activation. We demonstrate that treatment of melanoma cell lines in vitro and tumors in vivo with chemotherapeutic agents generates PAF-R-agonists in a process blocked by antioxidants, indicating the involvement of non-enzymatic PAF-R-agonists in this event. In a model system consisting of implantation of two tumors, we show that intratumoral chemotherapy with melphalan or etoposide of one tumor significantly augments the growth of the other (untreated) tumor in wild-type but not PAF-R-deficient hosts. Chemotherapeutic agents-mediated PAF-R-dependent increased tumor growth is blocked by systemic administration of antioxidants and cyclooxygenase-2 inhibitors. In addition, depleting antibodies against regulatory T cells (Tregs) significantly attenuated chemotherapy-mediated growth of untreated tumors, suggesting the role of Tregs in this process. Moreover, using FoxP3EGFP transgenic mice, we show that COX-2 inhibitor blocked intratumoral Tregs, indicating that Tregs are downstream to COX-2. Furthermore, PAF-R agonists were identified in perfusates of patients undergoing isolated limb chemoperfusion for melanoma with melphalan chemotherapy. Finally, various novel Ox-GPCs are identified after chemotherapy by mass spectrometry. These findings provide evidence for a novel and previously unappreciated pathway by which Ox-GPC PAF-R agonists produced as a by-product of chemotherapy modulate tumor growth via the inhibition of anti-tumor immunity. These studies might explain some instances of chemotherapy treatment failure and offer insights into potential therapeutic strategies that could enhance the overall anti-tumor effectiveness of chemotherapy
Force Distribution in a Granular Medium
We report on systematic measurements of the distribution of normal forces
exerted by granular material under uniaxial compression onto the interior
surfaces of a confining vessel. Our experiments on three-dimensional, random
packings of monodisperse glass beads show that this distribution is nearly
uniform for forces below the mean force and decays exponentially for forces
greater than the mean. The shape of the distribution and the value of the
exponential decay constant are unaffected by changes in the system preparation
history or in the boundary conditions. An empirical functional form for the
distribution is proposed that provides an excellent fit over the whole force
range measured and is also consistent with recent computer simulation data.Comment: 6 pages. For more information, see http://mrsec.uchicago.edu/granula
Stress transmission in granular matter
The transmission of forces through a disordered granular system is studied by
means of a geometrical-topological approach that reduces the granular packing
into a set of layers. This layered structure constitutes the skeleton through
which the force chains set up. Given the granular packing, and the region where
the force is applied, such a skeleton is uniquely defined. Within this
framework, we write an equation for the transmission of the vertical forces
that can be solved recursively layer by layer. We find that a special class of
analytical solutions for this equation are L\'evi-stable distributions. We
discuss the link between criticality and fragility and we show how the
disordered packing naturally induces the formation of force-chains and arches.
We point out that critical regimes, with power law distributions, are
associated with the roughness of the topological layers. Whereas, fragility is
associated with local changes in the force network induced by local granular
rearrangements or by changes in the applied force. The results are compared
with recent experimental observations in particulate matter and with computer
simulations.Comment: 14 pages, Latex, 5 EPS figure
Involvement of Platelet-Activating Factor in Ultraviolet B-Induced Hyperalgesia
Ultraviolet B (UVB) radiation causes cutaneous inflammation. One important clinical consequence of UVB-induced inflammation is increased pain or hyperalgesia, which is likely mediated by enhanced sensitivity of cutaneous sensory neurons. Previous studies have demonstrated that UVB radiation generates the lipid mediator, platelet-activating factor (PAF), as well as oxidized phospholipids that act as PAF-mimetics. These substances exert effects through the PAF receptor (PAF-R). This study was designed to assess whether PAF-R is involved in UVB-induced hyperalgesia. Intradermal injection of carbamoyl PAF (CPAF; 1-hexadecyl-2-N-methylcarbamoyl glycerophosphocholine) resulted in an enhanced response to mechanical stimuli in wild-type mice but not in PAF-R knockout (KO) mice. There was no significant change in paw withdrawal to noxious thermal stimuli in either genotype after intradermal injection of CPAF. Exposure of the hind paw to 1,500Jm-2 UVB radiation caused an increased sensitivity to both mechanical and thermal stimulation in wild-type mice but not in PAF-R KO mice. The thermal hyperalgesia caused by UVB irradiation was inhibited in mice that lacked PAF-R in bone marrow-derived cells. These data demonstrate that the PAF-R is important for UVB-induced hyperalgesia. Further investigation of the role of PAF-R signaling in UVB-induced hyperalgesia could provide better understanding of the pathological processes initiated by UVB-induced skin damage
Flowering Date of Taxonomic Families Predicts Phenological Sensitivity to Temperature: Implications for Forecasting the Effects of Climate Change on Unstudied Taxa
Premise of the study: Numerous long-term studies in seasonal habitats have tracked interannual variation in fi rst fl owering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affi nity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied; Methods: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before fl owering and whether families differ signifi cantly in the direction of their phenological shifts; Key results: Patterns observed among species within and across sites are mirrored among family means across sites; earlyfl owering families advance their FFD in response to warming more than late-fl owering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here; Conclusions: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-fl owering families (and the absence of earlyfl owering families not sensitive to temperature) may refl ect plasticity in fl owering time, which may be adaptive in environments where early-season conditions are highly variable among years
The Big Society and the Conjunction of Crises: Justifying Welfare Reform and Undermining Social Housing
The idea of the âBig Societyâ can be seen as culmination of a long-standing debate about the regulation of welfare. Situating the concept within governance theory, the article considers how the UK coalition government has justified a radical restructuring of welfare provision, and considers its implications for housing provision. Although drawing on earlier modernization processes, the article contends that the genesis for welfare reform was based on an analysis that the government was forced to respond to a unique conjunction of crises: in morality, the state, ideology and economics. The government has therefore embarked upon a programme, which has served to undermine the legitimacy of the social housing sector (most notably in England), with detrimental consequences for residents and raising significant dilemmas for those working in the housing sector
A Model for Force Fluctuations in Bead Packs
We study theoretically the complex network of forces that is responsible for
the static structure and properties of granular materials. We present detailed
calculations for a model in which the fluctuations in the force distribution
arise because of variations in the contact angles and the constraints imposed
by the force balance on each bead of the pile. We compare our results for force
distribution function for this model, including exact results for certain
contact angle probability distributions, with numerical simulations of force
distributions in random sphere packings. This model reproduces many aspects of
the force distribution observed both in experiment and in numerical simulations
of sphere packings
Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems
Existing estimates of fish and consumer biomass in the worldâs oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases â4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts
- âŠ