155 research outputs found

    Optical control of AMPA receptors using a photoswitchable quinoxaline-2,3-dione antagonist

    Get PDF
    AMPA receptors respond to the neurotransmitter glutamate and play a critical role in excitatory neurotransmission. They have been implicated in several psychiatric disorders and have rich pharmacology. Antagonists of AMPA receptors have been explored as drugs and one has even reached the clinic. We now introduce a freely diffusible photoswitchable antagonist that is selective for AMPA receptors and endows them with light-sensitivity. Our photoswitch, ShuBQX-3, is active in its dark-adapted trans-isoform but is significantly less active as its cis-isoform. ShuBQX-3 exhibits a remarkable red-shifting of its photoswitching properties through interactions with the AMPA receptor ligand binding site. Since it can be used to control action potential firing with light, it could emerge as a powerful tool for studying synaptic transmission with high spatial and temporal precision

    Pathophysiological mechanisms of liver injury in COVID-19

    Get PDF
    The recent outbreak of coronavirus disease 2019 (COVID‐19), caused by the Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) has resulted in a world‐wide pandemic. Disseminated lung injury with the development of acute respiratory distress syndrome (ARDS) is the main cause of mortality in COVID‐19. Although liver failure does not seem to occur in the absence of pre‐existing liver disease, hepatic involvement in COVID‐19 may correlate with overall disease severity and serve as a prognostic factor for the development of ARDS. The spectrum of liver injury in COVID‐19 may range from direct infection by SARS‐CoV‐2, indirect involvement by systemic inflammation, hypoxic changes, iatrogenic causes such as drugs and ventilation to exacerbation of underlying liver disease. This concise review discusses the potential pathophysiological mechanisms for SARS‐CoV‐2 hepatic tropism as well as acute and possibly long‐term liver injury in COVID‐19

    Reversible Photomechanical Switching of Individual Engineered Molecules at a Surface

    Full text link
    We have observed reversible light-induced mechanical switching for a single organic molecule bound to a metal surface. Scanning tunneling microscopy (STM) was used to image the features of an individual azobenzene molecule on Au(111) before and after reversibly cycling its mechanical structure between trans and cis states using light. Azobenzene molecules were engineered to increase their surface photomechanical activity by attaching varying numbers of tert-butyl (TB) ligands ("legs") to the azobenzene phenyl rings. STM images show that increasing the number of TB legs "lifts" the azobenzene molecules from the substrate, thereby increasing molecular photomechanical activity by decreasing molecule-surface coupling.Comment: related theoretical paper: cond-mat/061220

    Safety of direct oral anticoagulants in patients with advanced liver disease

    Get PDF
    BACKGROUND & AIMS: While direct oral anticoagulants (DOACs) are increasingly used in patients with liver disease, safety data especially in advanced chronic liver disease (ACLD) are limited. METHODS: Liver disease patients receiving DOAC treatment (ACLD: n = 104; vascular liver disease: n = 29) or vitamin K antagonists (VKA)/low‐molecular‐weight heparin (LMWH; ACLD: n = 45; vascular: n = 13) between January 2010 and September 2020 were retrospectively included. Invasive procedures and bleeding events were recorded. Calibrated anti‐Xa peak levels and thrombomodulin‐modified thrombin generation assays (TM‐TGAs) were measured in a subgroup of 35/28 DOAC patients. RESULTS: Among patients receiving DOAC, 55 (41.3%) had advanced liver dysfunction (Child‐Pugh‐stage [CPS] B/C) and 66 (49.6%) had experienced decompensation. Overall, 205 procedures were performed in 60 patients and procedure‐related bleedings occurred in 7 (11.7%) patients. Additionally, 38 (28.6%) patients experienced spontaneous (15 minor, 23 major) bleedings during a median follow‐up of 10.5 (IQR: 4.0‐27.8) months. Spontaneous bleedings in ACLD patients were more common in CPS‐B/C (at 12 months: 36.9% vs CPS‐A: 15.9%, subdistribution hazard ratio [SHR]: 3.23 [95% CI: 1.59‐6.58], P < .001), as were major bleedings (at 12 months: 22.0% vs 5.0%, SHR: 5.82 [95% CI: 2.00‐16.90], P < .001). Importantly, CPS (adjusted SHR: 4.12 [91% CI: 1.82‐9.37], P < .001), but not the presence of hepatocellular carcinoma or varices, was independently associated with major bleeding during DOAC treatment. Additionally, ACLD patients experiencing bleeding had worse overall survival (at 12 months: 88.9% vs 95.0% without bleeding; P < .001). Edoxaban anti‐Xa peak levels were higher in patients with CPS‐B/C (345 [95% CI: 169‐395] vs CPS‐A: 137 [95% CI: 96‐248] ng/mL, P = .048) and were associated with lower TM‐TGA. Importantly, spontaneous bleeding rates were comparable to VKA/LMWH patients. CONCLUSIONS: Anticoagulants including DOACs should be used with caution in patients with advanced liver disease due to a significant rate of spontaneous bleeding events

    Genetic Regulation of Plasma Lipid Species and Their Association with Metabolic Phenotypes.

    Get PDF
    The genetic regulation and physiological impact of most lipid species are unexplored. Here, we profiled 129 plasma lipid species across 49 strains of the BXD mouse genetic reference population fed either chow or a high-fat diet. By integrating these data with genomics and phenomics datasets, we elucidated genes by environment (diet) interactions that regulate systemic metabolism. We found quantitative trait loci (QTLs) for approximately 94% of the lipids measured. Several QTLs harbored genes associated with blood lipid levels and abnormal lipid metabolism in human genome-wide association studies. Lipid species from different classes provided signatures of metabolic health, including seven plasma triglyceride species that associated with either healthy or fatty liver. This observation was further validated in an independent mouse model of non-alcoholic fatty liver disease (NAFLD) and in plasma from NAFLD patients. This work provides a resource to identify plausible genes regulating the measured lipid species and their association with metabolic traits

    Fine-tuning of SIRT1 expression is essential to protect the liver from cholestatic liver disease

    Get PDF
    Cholestasis comprises aetiologically heterogeneous conditions characterized by accumulation of bile acids in the liver that actively contribute to liver damage. Sirtuin 1 (SIRT1) regulates liver regeneration and bile acid metabolism by modulating farnesoid X receptor (FXR); we here investigate its role in cholestatic liver disease. We determined SIRT1 expression in livers from patients with cholestatic disease, in two experimental models of cholestasis, as well as in human and murine liver cells in response to bile acid loading. SIRT1-overexpressing (SIRT oe ) and hepatocyte-specific SIRT1-KO (knockout) mice (SIRT hep–/– ) were subjected to bile duct ligation (BDL) and were fed with a 0.1% DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) diet to determine the biological relevance of SIRT1 during cholestasis. The effect of NorUDCA (24-norursodeoxycholic acid) was tested in BDL/SIRT oe mice. We found that SIRT1 was highly expressed in livers from cholestatic patients, mice after BDL, and Mdr2 knockout mice (Mdr2 –/– ) animals. The detrimental effects of SIRT1 during cholestasis were validated in vivo and in vitro. SIRT oe mice showed exacerbated parenchymal injury whereas SIRT hep–/– mice evidenced a moderate improvement after BDL and 0.1% DDC feeding. Likewise, hepatocytes isolated from SIRT oe mice showed increased apoptosis in response to bile acids, whereas a significant reduction was observed in SIRT hep–/– hepatocytes. Importantly, the decrease, but not complete inhibition, of SIRT1 exerted by norUDCA treatment correlated with pronounced improvement in liver parenchyma in BDL/SIRT oe mice. Interestingly, both SIRT1 overexpression and hepatocyte-specific SIRT1 depletion correlated with inhibition of FXR, whereas modulation of SIRT1 by NorUDCA associated with restored FXR signaling. Conclusion: SIRT1 expression is increased during human and murine cholestasis. Fine-tuning expression of SIRT1 is essential to protect the liver from cholestatic liver damage

    norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis

    Get PDF
    Background & Aim: Primary sclerosing cholangitis (PSC) represents a devastating bile duct disease, currently lacking effective medical therapy. 24-norursodeoxycholic acid (norUDCA) is a side chain-shortened C-23 homologue of UDCA and has shown potent anti-cholestatic, anti-inflammatory and anti-fibrotic properties in a preclinical PSC mouse model. A randomized controlled trial, including 38 centers from 12 European countries, evaluated the safety and efficacy of three doses of oral norUDCA (500 mg/d, 1,000 mg/d or 1,500 mg/d) compared with placebo in patients with PSC. Methods: One hundred sixty-one PSC patients without concomitant UDCA therapy and with elevated serum alkaline phosphatase (ALP) levels were randomized for a 12-week treatment followed by a 4-week follow-up. The primary efficacy endpoint was the mean relative change in ALP levels between baseline and end of treatment visit. Results: norUDCA reduced ALP levels by -12.3%, -17.3%, and -26.0% in the 500, 1,000, and 1,500 mg/d groups (p = 0.029, tively, while a +1.2% increase was observed in the placebo group. Similar dose-dependent results were found for secondary end-points, such as ALT, AST, gamma-GT, or the rate of patients achieving ALP levels <1.5 x ULN. Serious adverse events occurred in seven patients in the 500 mg/d, five patients in the 1,000 mg/d, two patients in the 1500 mg/d group, and three in the placebo group. There was no difference in reported pruritus between treatment and placebo groups. Conclusions: norUDCA significantly reduced ALP values dose-dependently in all treatment arms. The safety profile of norUDCA was excellent and comparable to placebo. Consequently, these results justify a phase III trial of norUDCA in PSC patients. Lay summary: Effective medical therapy for primary sclerosing cholangitis (PSC) is urgently needed. In this phase II clinical study in PSC patients, a side chain-shortened derivative of ursodeoxycholic acid, norursodeoxycholic acid (norUDCA), significantly reduced serum alkaline phosphatase levels in a dose-dependent manner during a 12-week treatment. Importantly, norUDCA showed a favorable safety profile, which was similar to placebo. The use of norUDCA in PSC patients is promising and will be further evaluated in a phase III clinical study. (C) 2017 European Association for the Study of the Liver. Published by Elsevier B.V.Peer reviewe

    Efficacy of Obeticholic Acid in Patients With Primary Biliary Cirrhosis and Inadequate Response to Ursodeoxycholic Acid

    Get PDF
    Background & AimsWe evaluated the efficacy and safety of obeticholic acid (OCA, α-ethylchenodeoxycholic acid) in a randomized controlled trial of patients with primary biliary cirrhosis who had an inadequate response to ursodeoxycholic acid therapy.MethodsWe performed a double-blind study of 165 patients with primary biliary cirrhosis (95% women) and levels of alkaline phosphatase (ALP) 1.5- to 10-fold the upper limit of normal. Patients were randomly assigned to groups given 10 mg, 25 mg, or 50 mg doses of OCA or placebo, once daily for 3 months. Patients maintained their existing dose of ursodeoxycholic acid throughout the study. The primary outcome was change in level of ALP from baseline (day 0) until the end of the study (day 85 or early termination). We also performed an open-label extension of the trial in which 78 patients were enrolled and 61 completed the first year.ResultsOCA was superior to placebo in achieving the primary end point. Subjects given OCA had statistically significant relative reductions in mean ALP from baseline to the end of the study (P < .0001 all OCA groups vs placebo). Levels of ALP decreased 21%–25% on average from baseline in the OCA groups and 3% in the placebo group. Sixty-nine percent (68 of 99) of patients given OCA had at least a 20% reduction in ALP compared with 8% (3 of 37) of patients given placebo (P < .0003). Among secondary end points, levels of Îł-glutamyl transpeptidase decreased 48%–63%, on average, among subjects given OCA, vs a 7% decrease in the group given placebo; levels of alanine aminotransferase decreased 21%–35% on average among subjects given OCA vs none of the patients given placebo. Pruritus was the principal adverse event; incidence values in the OCA 10 mg, 25 mg, and 50 mg groups were 47% (not significantly different), 87% (P < .0003), and 80% (P < .006), respectively, vs 50% in the placebo group. In the extension study, levels of ALP continued to decrease to a mean level of 202 ± 11 U/L after 12 months vs 285 ± 15 U/L at baseline.ConclusionsDaily doses of OCA, ranging from 10 to 50 mg, significantly reduced levels of ALP, Îł-glutamyl transpeptidase, and alanine aminotransferase, compared with placebo, in patients with primary biliary cirrhosis who had inadequate responses to ursodeoxycholic acid. The incidence and severity of pruritus were lowest among patients who received 10 mg/d OCA. Biochemical responses to OCA were maintained in a 12-month open-label extension trial. ClinicalTrials.gov ID: NCT00550862

    Low levels of IgM antibodies recognizing oxidation-specific epitopes are associated with human non-alcoholic fatty liver disease

    Get PDF
    Background: Lipid oxidation of membrane phospholipids is accompanied by the formation of oxidation-specific epitopes (OSE). These epitopes are recognized by specific antibodies and represent danger-associated molecular patterns that are generated during chronic inflammatory processes. In a murine model for hepatic inflammation during non-alcoholic fatty liver disease (NAFLD), increased antibody levels targeting OSE were found to be protective. Here, our aim was to determine an association between OSE-specific antibody titers and NAFLD in humans. Methods: IgM and IgG levels with specificity for various OSE were assessed in the plasma of patients with NAFLD (n = 71) and healthy controls (n = 68). Antibody titers were comprehensively analyzed in patients with NAFLD after classification by histological evaluation of liver biopsies. Statistical analysis was performed to determine significant correlations and odds ratios. To study the specificity for NAFLD, plasma antibody titers were measured in patients with hepatitis C (n = 40) and inflammatory bowel disease (n = 62). Results: IgM titers against OSE were lower in patients with NAFLD compared to controls. Further biopsy-based classification of patients with NAFLD did not show any difference in IgM levels. Plasma IgM titers towards the P1 mimotope demonstrated an inverse correlation with markers for obesity, systemic inflammation, and liver damage. In contrast, hepatitis C and increased disease activity during inflammatory bowel disease was not associated with reduced IgM titers. Conclusions: Our data highlight the importance of immune recognition of OSE by IgM antibodies in the pathophysiology of NAFLD

    Gamma-glutamyltransferase is a strong predictor of secondary sclerosing cholangitis after lung transplantation for COVID-19 ARDS

    Get PDF
    Background: Lung transplantation (LTx) can be considered for selected patients suffering from COVID-19 acute respiratory distress syndrome (ARDS). Secondary sclerosing cholangitis in critically ill (SSC-CIP) patients has been described as a late complication in COVID-19 ARDS survivors, however, rates of SSC-CIP after LTx and factors predicting this detrimental sequela are unknown. Methods: This retrospective analysis included all LTx performed for post-COVID ARDS at 8 European LTx centers between May 2020 and January 2022. Clinical risk factors for SSC-CIP were analyzed over time. Prediction of SSC-CIP was assessed by ROC-analysis. Results: A total of 40 patients were included in the analysis. Fifteen patients (37.5%) developed SSC-CIP. GGT at the time of listing was significantly higher in patients who developed SSC-CIP (median 661 (IQR 324-871) vs 186 (109-346); p = 0.001). Moreover, higher peak values for GGT (585 vs 128.4; p < 0.001) and ALP (325 vs 160.2; p = 0.015) were found in the ‘SSC’ group during the waiting period. Both, GGT at the time of listing and peak GGT during the waiting time, could predict SSC-CIP with an AUC of 0.797 (95% CI: 0.647-0.947) and 0.851 (95% CI: 0.707-0.995). Survival of ‘SSC’ patients was severely impaired compared to ‘no SSC’ patients (1-year: 46.7% vs 90.2%, log-rank p = 0.004). Conclusions: SSC-CIP is a severe late complication after LTx for COVID-19 ARDS leading to significant morbidity and mortality. GGT appears to be a sensitive parameter able to predict SSC-CIP even at the time of listing
    • 

    corecore