20 research outputs found

    Pseudo-Random Streams for Distributed and Parallel Stochastic Simulations on GP-GPU

    Get PDF
    International audienceRandom number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. In particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. This results in a situation where potential biases can be combined with performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to parallelize random streams correctly, in the context of GPU-enabled stochastic simulations

    GATE : a simulation toolkit for PET and SPECT

    Get PDF
    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.epfl.ch/GATE/

    Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial

    Get PDF
    SummaryBackgroundThe 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo).MethodsIn the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18–65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18–50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1 × 1010 viral particle units (pu), 2·5 × 1010 pu, 5 × 1010 pu, or 1 × 1011 pu; US participants received 1 × 1010 pu or 1 × 1011 pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2 × 108 plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured with occurrence of adverse events for 7 days after vaccination. Both trials are registered with ClinicalTrials.gov, numbers NCT02231866 (US) and NCT02267109 (Malian).FindingsBetween Oct 8, 2014, and Feb 16, 2015, we randomly allocated 91 participants in Mali (ten [11%] to 1 × 1010 pu, 35 [38%] to 2·5 × 1010 pu, 35 [38%] to 5 × 1010 pu, and 11 [12%] to 1 × 1011 pu) and 20 in the USA (ten [50%] to 1 × 1010 pu and ten [50%] to 1 × 1011 pu), and boosted 52 Malians with MVA-BN-Filo (27 [52%]) or saline (25 [48%]). We identified no safety concerns with either vaccine: seven (8%) of 91 participants in Mali (five [5%] received 5 × 1010 and two [2%] received 1 × 1011 pu) and four (20%) of 20 in the USA (all received 1 × 1011 pu) given ChAd3-EBO-Z had fever lasting for less than 24 h, and 15 (56%) of 27 Malians boosted with MVA-BN-Filo had injection-site pain or tenderness.Interpretation1 × 1011 pu single-dose ChAd3-EBO-Z could suffice for phase 3 efficacy trials of ring-vaccination containment needing short-term, high-level protection to interrupt transmission. MVA-BN-Filo boosting, although a complex regimen, could confer long-lived protection if needed (eg, for health-care workers).FundingWellcome Trust, Medical Research Council UK, Department for International Development UK, National Cancer Institute, Frederick National Laboratory for Cancer Research, Federal Funds from National Institute of Allergy and Infectious Diseases

    An assessment of the risk of Bt-cowpea to non-target organisms in West Africa

    Get PDF
    Cowpea (Vigna unguiculata Walp.) is the most economically important legume crop in arid regions of sub-Saharan Africa. Cowpea is grown primarily by subsistence farmers who consume the leaves, pods and grain on farm or sell grain in local markets. Processed cowpea foods such as akara (a deep-fat fried fritter) are popular in the rapidly expanding urban areas. Demand far exceeds production due, in part, to a variety of insect pests including, in particular, the lepidopteran legume pod borer (LPB) Maruca vitrata. Genetically engineered Bt-cowpea, based on cry1Ab (Event 709) and cry2Ab transgenes, is being developed for use in sub-Saharan Africa to address losses from the LBP. Before environmental release of transgenic cowpeas, the Bt Cry proteins they express need to be assessed for potential effects on non-target organisms, particularly arthropods. Presented here is an assessment of the potential effects of those Cry proteins expressed in cowpea for control of LPB. Based on the history of safe use of Bt proteins, as well as the fauna associated with cultivated and wild cowpea in sub-Saharan Africa results indicate negligible effects on non-target organisms

    The diversity of meningococcal carriage across the african meningitis belt and the impact of vaccination with a group a meningococcal conjugate vaccine

    No full text
    Background. Study of meningococcal carriage is essential to understanding the epidemiology of Neisseria meningitidis infection. Methods. Twenty cross-sectional carriage surveys were conducted in 7 countries in the African meningitis belt; 5 surveys were conducted after introduction of a new serogroup A meningococcal conjugate vaccine (MenAfriVac). Pharyngeal swab specimens were collected, and Neisseria species were identified by microbiological and molecular techniques. Results. A total of 1687 of 48 490 participants (3.4%; 95% confidence interval [CI], 3.2%-3.6%) carried meningococci. Carriage was more frequent in individuals aged 5-14 years, relative to those aged 15-29 years (adjusted odds ratio [OR], 1.41; 95% CI, 1.25-1.60); in males, relative to females (adjusted OR, 1.17; 95% CI, 1.10-1.24); in individuals in rural areas, relative to those in urban areas (adjusted OR, 1.44; 95% CI, 1.28-1.63); and in the dry season, relative to the rainy season (adjusted OR, 1.54; 95% CI, 1.37-1.75). Forty-eight percent of isolates had genes encoding disease-associated polysaccharide capsules; genogroup W predominated, and genogroup A was rare. Strain diversity was lower in countries in the center of the meningitis belt than in Senegal or Ethiopia. The prevalence of genogroup A fell from 0.7% to 0.02% in Chad following mass vaccination with MenAfriVac. Conclusions. The prevalence of meningococcal carriage in the African meningitis belt is lower than in industrialized countries and is very diverse and dynamic, even in the absence of vaccination
    corecore