13 research outputs found

    Vers l'Elaboration de Pistes Magnétiques Enregistrables : De la Molécule au Matériau

    Get PDF
    Remarkable progress in information technology has led to the development of smaller and more powerful systems. This effort requires the design of new materials which are more complex at the atomic scale. Our goal is to develop magnetic nanoparticles confined into the well-organized nanocraters of non-magnetic thin films that should present a strong magnetic anisotropy (as oxides or alloys). In order to synthesize these magnetic nanoparticles, our original bottom-up approach involves three steps : i) elaboration of a solid nanostructured matrix via sol-gel chemistry in the presence of structuring agents, ii) formation of Prussian Blue Analogues (PBA) in the pores of this matrix and iii) thermal treatment under a controlled atmosphere. Two types of nanostructured matrices have been investigated : nanoperforated TiO2 thin films, in order to organize particles on a surface, and mesoporous silica monoliths, which allow to study the transformation of a larger amount of PBA nanoparticles into oxide or alloy than in the case of thin films. PBAs were chosen as precursors for the formation of magnetic particles because of their well-defined chemical composition and structure. PBA chemistry is versatile and the stoichiometry and structure of the resulting coordination polymer can be perfectly controlled at the atomic scale. Controlling PBA chemistry should thus enable us to finely tune the chemical composition and structure of the corresponding alloys and oxides and hence their magnetic properties.An original method, developed in our laboratory, results in well-confined PBA particles within the organized porosity of a mesoporous silica monoliths to form PBA/SiO2 nanocomposites. The thermal treatment of these nanocomposites under different controlled atmospheres was then investigated in order to get Oxide/SiO2 and Metal/SiO2 nanocomposites with a perfectly preserved mesoporosity and well-confined nanoparticles with controlled chemical composition, size and shape.The PBA formation inside the nanocraters of a TiO2 thin film is performed by successive immersions of the film in the PBA precursor solutions. A systematic study of each step of the synthesis leads to the formation of PBA particles within each nanoperforation in the thin film. Finally, the thermal treatment under different controlled atmospheres enabled the transformation of PBA particles into oxides or alloys inside the nanoperforations.Les progrès fulgurants de l'informatique poussent au développement de dispositifs plus petits et plus puissants, impliquant la conception de matériaux continuellement plus complexes à l’échelle nanoscopique. Notre objectif est de développer, par une approche purement bottom-up, des nanoparticules magnétiques présentant de fortes anisotropies magnétiques (oxydes ou alliages) et localisées dans des nanoperforations bien organisées d'un film mince d’oxyde non magnétique. Notre approche originale pour synthétiser ces nanoparticules magnétiques comprend trois étapes: i) l’élaboration d’une matrice solide nanostructurée par chimie sol-gel en présence d’agents structurants, ii) la formation d’analogues du bleu de Prusse (ABP) dans la nanostructuration de ces matrices et iii) leur traitement thermique sous atmosphère contrôlée. Deux types de matrices solides nanostructurées ont été étudiées : les films minces de TiO2 nanoperforés, permettant d’organiser les particules sur une surface, et les monolithes de silice mésoporeux, permettant l’étude de la transformation des particules d’ABP en oxyde et alliage sur des quantités de matière plus importante que celle contenue dans les films nanoperforés. Les ABPs ont été choisis comme précurseurs pour la formation de ces particules magnétiques en raison de leur composition chimique et de leur structure particulièrement bien définies. En modulant la chimie très versatile des ABPs combinée à une parfaite maîtrise de leur stœchiométrie à l'échelle atomique, il devrait être possible de réguler finement la composition chimique, la structure et donc les propriétés magnétiques des alliages et des oxydes.Une méthode originale, mise au point au laboratoire, permet de confiner des particules d’ABPs à l’intérieur de monolithes de silice mésoporeux pour former des nanocomposites ABP/SiO2. Le traitement thermique de ces nanocomposites sous atmosphère contrôlée a été étudié de façon à obtenir des nanocomposites Oxyde/SiO2 et Métal/SiO2 présentant une mésoporosité parfaitement préservée ainsi que des nanoparticules bien confinées dans la porosité.La formation d’ABP dans les nanoperforations d’un film mince de TiO2 est réalisée grâce à l'immersion successive de ce film dans des solutions de précurseurs de l’ABP. Une étude systématique de chaque étape de la synthèse a permis d’aboutir à la formation de particules d’ABP à l’intérieur de chaque nanoperforation du film mince. Enfin, le traitement thermique sous atmosphère contrôlée a conduit à la transformation des particules d’ABPs en oxydes mixtes ou en alliages dans ces nanoperforations

    Toward the Elaboration of Recordable Magnetic Track : From Molecule to Material

    No full text
    Les progrès fulgurants de l'informatique poussent au développement de dispositifs plus petits et plus puissants, impliquant la conception de matériaux continuellement plus complexes à l’échelle nanoscopique. Notre objectif est de développer, par une approche purement bottom-up, des nanoparticules magnétiques présentant de fortes anisotropies magnétiques (oxydes ou alliages) et localisées dans des nanoperforations bien organisées d'un film mince d’oxyde non magnétique. Notre approche originale pour synthétiser ces nanoparticules magnétiques comprend trois étapes: i) l’élaboration d’une matrice solide nanostructurée par chimie sol-gel en présence d’agents structurants, ii) la formation d’analogues du bleu de Prusse (ABP) dans la nanostructuration de ces matrices et iii) leur traitement thermique sous atmosphère contrôlée. Deux types de matrices solides nanostructurées ont été étudiées : les films minces de TiO2 nanoperforés, permettant d’organiser les particules sur une surface, et les monolithes de silice mésoporeux, permettant l’étude de la transformation des particules d’ABP en oxyde et alliage sur des quantités de matière plus importante que celle contenue dans les films nanoperforés. Les ABPs ont été choisis comme précurseurs pour la formation de ces particules magnétiques en raison de leur composition chimique et de leur structure particulièrement bien définies. En modulant la chimie très versatile des ABPs combinée à une parfaite maîtrise de leur stœchiométrie à l'échelle atomique, il devrait être possible de réguler finement la composition chimique, la structure et donc les propriétés magnétiques des alliages et des oxydes.Une méthode originale, mise au point au laboratoire, permet de confiner des particules d’ABPs à l’intérieur de monolithes de silice mésoporeux pour former des nanocomposites ABP/SiO2. Le traitement thermique de ces nanocomposites sous atmosphère contrôlée a été étudié de façon à obtenir des nanocomposites Oxyde/SiO2 et Métal/SiO2 présentant une mésoporosité parfaitement préservée ainsi que des nanoparticules bien confinées dans la porosité.La formation d’ABP dans les nanoperforations d’un film mince de TiO2 est réalisée grâce à l'immersion successive de ce film dans des solutions de précurseurs de l’ABP. Une étude systématique de chaque étape de la synthèse a permis d’aboutir à la formation de particules d’ABP à l’intérieur de chaque nanoperforation du film mince. Enfin, le traitement thermique sous atmosphère contrôlée a conduit à la transformation des particules d’ABPs en oxydes mixtes ou en alliages dans ces nanoperforations.Remarkable progress in information technology has led to the development of smaller and more powerful systems. This effort requires the design of new materials which are more complex at the atomic scale. Our goal is to develop magnetic nanoparticles confined into the well-organized nanocraters of non-magnetic thin films that should present a strong magnetic anisotropy (as oxides or alloys). In order to synthesize these magnetic nanoparticles, our original bottom-up approach involves three steps : i) elaboration of a solid nanostructured matrix via sol-gel chemistry in the presence of structuring agents, ii) formation of Prussian Blue Analogues (PBA) in the pores of this matrix and iii) thermal treatment under a controlled atmosphere. Two types of nanostructured matrices have been investigated : nanoperforated TiO2 thin films, in order to organize particles on a surface, and mesoporous silica monoliths, which allow to study the transformation of a larger amount of PBA nanoparticles into oxide or alloy than in the case of thin films. PBAs were chosen as precursors for the formation of magnetic particles because of their well-defined chemical composition and structure. PBA chemistry is versatile and the stoichiometry and structure of the resulting coordination polymer can be perfectly controlled at the atomic scale. Controlling PBA chemistry should thus enable us to finely tune the chemical composition and structure of the corresponding alloys and oxides and hence their magnetic properties.An original method, developed in our laboratory, results in well-confined PBA particles within the organized porosity of a mesoporous silica monoliths to form PBA/SiO2 nanocomposites. The thermal treatment of these nanocomposites under different controlled atmospheres was then investigated in order to get Oxide/SiO2 and Metal/SiO2 nanocomposites with a perfectly preserved mesoporosity and well-confined nanoparticles with controlled chemical composition, size and shape.The PBA formation inside the nanocraters of a TiO2 thin film is performed by successive immersions of the film in the PBA precursor solutions. A systematic study of each step of the synthesis leads to the formation of PBA particles within each nanoperforation in the thin film. Finally, the thermal treatment under different controlled atmospheres enabled the transformation of PBA particles into oxides or alloys inside the nanoperforations

    Vers l'Elaboration de Pistes Magnétiques Enregistrables : De la Molécule au Matériau

    No full text
    Remarkable progress in information technology has led to the development of smaller and more powerful systems. This effort requires the design of new materials which are more complex at the atomic scale. Our goal is to develop magnetic nanoparticles confined into the well-organized nanocraters of non-magnetic thin films that should present a strong magnetic anisotropy (as oxides or alloys). In order to synthesize these magnetic nanoparticles, our original bottom-up approach involves three steps : i) elaboration of a solid nanostructured matrix via sol-gel chemistry in the presence of structuring agents, ii) formation of Prussian Blue Analogues (PBA) in the pores of this matrix and iii) thermal treatment under a controlled atmosphere. Two types of nanostructured matrices have been investigated : nanoperforated TiO2 thin films, in order to organize particles on a surface, and mesoporous silica monoliths, which allow to study the transformation of a larger amount of PBA nanoparticles into oxide or alloy than in the case of thin films. PBAs were chosen as precursors for the formation of magnetic particles because of their well-defined chemical composition and structure. PBA chemistry is versatile and the stoichiometry and structure of the resulting coordination polymer can be perfectly controlled at the atomic scale. Controlling PBA chemistry should thus enable us to finely tune the chemical composition and structure of the corresponding alloys and oxides and hence their magnetic properties.An original method, developed in our laboratory, results in well-confined PBA particles within the organized porosity of a mesoporous silica monoliths to form PBA/SiO2 nanocomposites. The thermal treatment of these nanocomposites under different controlled atmospheres was then investigated in order to get Oxide/SiO2 and Metal/SiO2 nanocomposites with a perfectly preserved mesoporosity and well-confined nanoparticles with controlled chemical composition, size and shape.The PBA formation inside the nanocraters of a TiO2 thin film is performed by successive immersions of the film in the PBA precursor solutions. A systematic study of each step of the synthesis leads to the formation of PBA particles within each nanoperforation in the thin film. Finally, the thermal treatment under different controlled atmospheres enabled the transformation of PBA particles into oxides or alloys inside the nanoperforations.Les progrès fulgurants de l'informatique poussent au développement de dispositifs plus petits et plus puissants, impliquant la conception de matériaux continuellement plus complexes à l’échelle nanoscopique. Notre objectif est de développer, par une approche purement bottom-up, des nanoparticules magnétiques présentant de fortes anisotropies magnétiques (oxydes ou alliages) et localisées dans des nanoperforations bien organisées d'un film mince d’oxyde non magnétique. Notre approche originale pour synthétiser ces nanoparticules magnétiques comprend trois étapes: i) l’élaboration d’une matrice solide nanostructurée par chimie sol-gel en présence d’agents structurants, ii) la formation d’analogues du bleu de Prusse (ABP) dans la nanostructuration de ces matrices et iii) leur traitement thermique sous atmosphère contrôlée. Deux types de matrices solides nanostructurées ont été étudiées : les films minces de TiO2 nanoperforés, permettant d’organiser les particules sur une surface, et les monolithes de silice mésoporeux, permettant l’étude de la transformation des particules d’ABP en oxyde et alliage sur des quantités de matière plus importante que celle contenue dans les films nanoperforés. Les ABPs ont été choisis comme précurseurs pour la formation de ces particules magnétiques en raison de leur composition chimique et de leur structure particulièrement bien définies. En modulant la chimie très versatile des ABPs combinée à une parfaite maîtrise de leur stœchiométrie à l'échelle atomique, il devrait être possible de réguler finement la composition chimique, la structure et donc les propriétés magnétiques des alliages et des oxydes.Une méthode originale, mise au point au laboratoire, permet de confiner des particules d’ABPs à l’intérieur de monolithes de silice mésoporeux pour former des nanocomposites ABP/SiO2. Le traitement thermique de ces nanocomposites sous atmosphère contrôlée a été étudié de façon à obtenir des nanocomposites Oxyde/SiO2 et Métal/SiO2 présentant une mésoporosité parfaitement préservée ainsi que des nanoparticules bien confinées dans la porosité.La formation d’ABP dans les nanoperforations d’un film mince de TiO2 est réalisée grâce à l'immersion successive de ce film dans des solutions de précurseurs de l’ABP. Une étude systématique de chaque étape de la synthèse a permis d’aboutir à la formation de particules d’ABP à l’intérieur de chaque nanoperforation du film mince. Enfin, le traitement thermique sous atmosphère contrôlée a conduit à la transformation des particules d’ABPs en oxydes mixtes ou en alliages dans ces nanoperforations

    Using Prussian blue analogue nanoparticles confined into ordered mesoporous silica monoliths as precursors of oxides

    No full text
    International audiencePowdered Prussian blue analogues (PBAs) and PBAs confined in ordered mesoporous silica monoliths were used as oxide precursors through thermal treatment under an oxidizing atmosphere. The study focuses on the transformation of the alkali cation-free CoCo PBA of chemical formula K0.1CoII4[CoIII(CN)6]2.7·20 H2O. The compounds were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), IR spectroscopy and small-angle X-ray scattering (SAXS), and the magnetic properties of the calcined samples were investigated. In both cases, powdered and confined PBAs, the coordination polymers are transformed into well-crystallized Co3O4 spinel oxide. In the case of the confined PBA, isolated Co3O4 single crystals confined within the ordered mesoporosity of the monoliths were evidenced by HRTEM. A preliminary study shows an effect of particle size and confinement on the magnetic properties of the confined oxide particles

    In situ site-selective transition metal K-edge XAS: a powerful probe of the transformation of mixed-valence compounds

    No full text
    International audienceWe present herein the first in situ site-selective XAS experiment performed on a proof-of-principle transformation of a mixed-valence compound: the calcination of the K0.1Co4II[Co-III(CN)(6)](2.7)center dot 20H(2)O Prussian Blue analogue (containing Co2+ and Co3+ ions in two different O-h sites) into Co3O4 (containing Co2+ ions in a T-d site and Co3+ in an O-h site). By recording the Co K-edge X-ray absorption spectra using a spectrometer aligned at the Co K beta(1,3) emission line, the evolution of each species was singly monitored from 20 degrees C up to the oxide formation. The experimental spectrum of the Co2+(T-d) and Co3+ (O-h) species in Co3O4 is reported for the first time. Our results demonstrate the possibilities offered by site-selective XAS for the investigation of chemical transformations and the study of materials under working conditions whenever the chemical element of interest is present in several states and/or site

    Towards bottom-up nanopatterning of Prussian blue analogues

    No full text
    International audienceOrdered nanoperforated TiO2 monolayers fabricated through sol-gel chemistry were used to grow isolated particles of Prussian blue analogues (PBA). The elaboration of the TiO2/CoFe PBA nanocomposites involves five steps. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) all along the synthesis process. Selected physico-chemical parameters have been varied in order to determine the key steps of the synthesis process and to optimize it. This study is an important step towards the full control of the fabrication process

    Grain-size effect on Cr3+^{3+} and F-centres photoluminescence in nanophase MgAl2_2O4_4 ceramics

    No full text
    Photoluminescence (PL) spectroscopy of transparent MgAl2_2O4_4 spinel ceramics with grain size between 100 and 300 nm was studied at 7 K temperature in the near-IR-VUV range of spectrum with synchrotron radiation excitation. The PL spectra were composed of optical transitions from spatially different regions of the ceramics, which analysis evidenced grain size effect on the emission line-shapes and intensities. In particular, emission of impurity Cr3+^{3+} ions, being structured in the crystalline bulk, became broad-band in the grain boundary regions, which was associated with respectively strong and weak local crystalline fields. It was observed that (i) excitons and F centres transfer energy to Cr3+^{3+} and (ii) Cr(2^2Eg_g)/Cr(4^4T2g_{2g}) and F-centres/Cr3+^{3+} PL intensity ratios underwent a linear dependence on the grain size

    A highly efficient solution and solid state ESIPT fluorophore and its OLEDs application

    No full text
    International audienceWe present herein the synthesis and the photophysics of 2,2’-bipyridine-3,3’-diol-5,5’-dicarboxylic acid ethyl ester (BP(OH)2_2DCEt2_2), an excited state intramolecular proton tranfer (ESIPT)-based fluorophore featuring two identical intramolecular hydrogen bonds. BP(OH)2_2DCEt2_2 emits efficiently not only in solution, including protic solvents (λem\lambda _{em} = 521 nm, Φ\Phif_f = 40 to 75%), but also in crystalline state (λem\lambda _{em} = 530 nm, Φ\Phif_f = 51%). In addition, its saponified form (Na2BP(OH)2DC) is highly fluorescent in water (λem\lambda _{em} = 490 nm, Φ\Phif_f = 51%). Finally, the good electroluminescence performance of BP(OH)2_2DCEt2_2 is also demonstrated in an OLED device

    Fluorescent Zr(IV) Metal–Organic Frameworks Based on an Excited-State Intramolecular Proton Transfer-Type Ligand

    No full text
    International audienceWe report here the preparation of a series of Zr(IV) Metal Organic Frameworks of the MIL-140 structure type incorporating a ligand exhibiting an intense Excited State Intramolecular Proton Transfer (ESIPT) fluorescence. These solids were obtained by systematically varying the substitution rate of 4,4'-biphenyldicarboxylate by 2,2'-bipyridine-3,3'-diol-5,5'-dicarboxylate, and thoroughly characterized by complementary techniques, including high resolution powder X-ray diffraction, solid state NMR spectroscopy, nitrogen sorption experiments and time-resolved fluorescence. We showed that the incorporation of the ESIPT-type ligand induces an increase of the hydrophilicity, leading ultimately to a higher sensitivity toward hydrolysis, a phenomenon rarely observed in this structure type considered as one of the most stable among the Zr carboxylate MOFs. Eventually, the optimization of the amount of fluorescent ligand within the structure allowed combining a decent microposity (SBET > 750 m 2 .g-1) and a high stability even in boiling water, together with a high fluorescence quantum yield (> 30%)
    corecore