679 research outputs found

    Membrane receptors of mouse leukocytes. II. Sequential expression of membrane receptors and phagocytic capacity during leukocyte differentiation

    Get PDF
    Analysis of four mature cell markers on mouse bone marrow leukocytes grown in vitro, demonstrated a distinct sequence of marker appearance during the terminal phases of granulocytic cell differentiation. A similar pattern of marker expression was also suggested by analysis of mature neutrophils and macrophages isolated from normal tissues. Among cultured neutrophils, receptors for the Fc portion of IgG (FcR) were first expressed on myelocytes and metamyelocytes, and then subsequently on more mature cells. Morphologically mature colony neutrophils (polymorphs) from agar cultures contained only FcR and complement receptor type two (CR(2)) (C3d receptor), and lacked both complement receptor type one (CR(1)) (C3b receptor) and the capacity to ingest latex, bacteria, or iron particles. Neutrophils from 2 and 3 wk liquid media cultures of marrow cells differed from agar grown neutrophils in that they had phagocytic capacity (particle ingestion) [Pi] in addition to FcR and CR(2). Furthermore, in the 4th and 5th wk of these continuous liquid cultures, CR(1) was also expressed, completing the surface marker profile of normal blood neutrophils. Based on these studies, the following order of appearance of these four markers on cells from the myelocytic series was proposed: FcR {arrow} FcR CR(2) {arrow} FcR CR(2) Pi {arrow} FcR CR(2) Pi CR(1). Differential studies of tissue leukocytes containing these same markers revealed that a heterogeneity existed among morphologically mature neutrophils. Even though 95 percent of blood polymorphs contained all four markers, the same was true of only half of spleen polymorphs and only 20 percent of bone marrow polymorphs. Cells of the monocyte-macrophage series were studies in parallel with neutrophils. Cultured marrow monocytes acquired the four mature cell markers so rapidly that the order of receptor appearance could not be determined. However, it was found that CR2 was lost during the terminal phase of monocyte maturation into activated macrophages

    Unsuspected role of the brain morphogenetic gene Otx1 in hematopoiesis

    Get PDF
    Otx1 belongs to the paired class of homeobox genes and plays a pivotal role in brain development. Here, we show that Otx1 is expressed in hematopoietic pluripotent and erythroid progenitor cells. Moreover, bone marrow cells from mice lacking Otx1 exhibit a cell-autonomous impairment of the erythroid compartment. In agreement with these results, molecular analysis revealed decreased levels of erythroid genes that include the SCL and GATA-1 transcription factors. Accordingly, a gain of function of SCL rescues the erythroid deficiency in Otx1-/- mice. Taken together, our findings indicate a function for Otx1 in the regulation of blood cell production. There is growing evidence suggesting that common cellular and molecular mechanisms orchestrate differentiation in various tissues. Homeobox-containing genes seem to be strong candidate genes to regulate a number of developmental processes, including neurogenesis and hematopoiesis. Members of the Otx family (Otx1, Otx2, Otx3, and Crx) are the vertebrate homologues of the Drosophila head gap gene orthodenticle and encode transcription factors containing a bicoid-like homeodomain. They are temporally and spatially regulated during development and seem to be required for proper head and sense organ patterning. Otx1, Otx2, and Otx3 show partially overlapping, but distinct expression patterns, and Otx2, the first to be activated during development, plays a major role in gastrulation and in the early specification of the anterior neural plate. In contrast, Otx1 shows a later onset and is involved in corticogenesis, sense organ development, and pituitary function. Mice bearing targeted deletion of Otx1 are affected by a permanent epileptic phenotype and show multiple brain abnormalities and morphological defects of the acoustic and visual sense organs. In addition, at the prepubescent stage, they exhibit transient dwarfism and hypogonadism because of low levels of pituitary hormones. In the present study, we have investigated whether Otx1 also plays a role in blood cell production, as several homeobox genes of different families are involved in normal and/or malignant hematopoiesis

    Hydrochars as Emerging Biofuels: Recent Advances and Application of Artificial Neural Networks for the Prediction of Heating Values

    Get PDF
    In this study, the growing scientific field of alternative biofuels was examined, with respect to hydrochars produced from renewable biomasses. Hydrochars are the solid products of hydrothermal carbonization (HTC) and their properties depend on the initial biomass and the temperature and duration of treatment. The basic (Scopus) and advanced (Citespace) analysis of literature showed that this is a dynamic research area, with several sub-fields of intense activity. The focus of researchers on sewage sludge and food waste as hydrochar precursors was highlighted and reviewed. It was established that hydrochars have improved behavior as fuels compared to these feedstocks. Food waste can be particularly useful in co-hydrothermal carbonization with ash-rich materials. In the case of sewage sludge, simultaneous P recovery from the HTC wastewater may add more value to the process. For both feedstocks, results from large-scale HTC are practically non-existent. Following the review, related data from the years 2014–2020 were retrieved and fitted into four different artificial neural networks (ANNs). Based on the elemental content, HTC temperature and time (as inputs), the higher heating values (HHVs) and yields (as outputs) could be successfully predicted, regardless of original biomass used for hydrochar production. ANN3 (based on C, O, H content, and HTC temperature) showed the optimum HHV predicting performance (R2 0.917, root mean square error 1.124), however, hydrochars’ HHVs could also be satisfactorily predicted by the C content alone (ANN1, R2 0.897, root mean square error 1.289)

    Introducing the “analogs for Venus’ geologically recent surfaces” initiative: an opportunity for identifying and analyzing recently active volcano-tectonic areas of Venus trough a comparative study with terrestrial analogs

    Get PDF
    Several missions to Venus have been recently selected for launch [1–6], opening a new era for the exploration of the planet. One of the key questions that the future missions need to address is whether Venus is presently volcanically active [7–15]. Studying areas of active volcanism and tectonism on Venus is crucial to reveal clues about the geologic past of the planet, as well as provide information about the volatile content of its interior and the formation of its dense atmosphere. The “Analogsfor VENus’ GEologically Recent Surfaces” (AVENGERS) initiative aims to build a comprehensive database of terrestrial analog sites for the comparative study of recent and possibly on- going volcanic activity on Venus. Besides its scientific relevance, the AVENG- ERS initiative also acts as a bridge for international scientific collaboration, including the leadership and/or team members from the currently selected missions to Venus

    Craters, Boulders and Regolith of (101955) Bennu Indicative of an Old and Dynamic Surface

    Get PDF
    Small, kilometre-sized near-Earth asteroids are expected to have young and frequently refreshed surfaces for two reasons: collisional disruptions are frequent in the main asteroid belt where they originate, and thermal or tidal processes act on them once they become near-Earth asteroids. Here we present early measurements of numerous large candidate impact craters on near-Earth asteroid (101955) Bennu by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer) mission, which indicate a surface that is between 100 million and 1 billion years old, predating Bennu's expected duration as a near-Earth asteroid. We also observe many fractured boulders, the morphology of which suggests an influence of impact or thermal processes over a considerable amount of time since the boulders were exposed at the surface. However, the surface also shows signs of more recent mass movement: clusters of boulders at topographic lows, a deficiency of small craters and infill of large craters. The oldest features likely record events from Bennu's time in the main asteroid belt

    A Potential Role of the CD47/SIRPalpha Axis in COVID-19 Pathogenesis

    Get PDF
    The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air−liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research

    "New" Veneziano amplitudes from "old" Fermat (hyper) surfaces

    Get PDF
    The history of discovery of bosonic string theory is well documented. This theory evolved as an attempt to find a multidimensional analogue of Euler's beta function. Such an analogue had in fact been known in mathematics literature at least in 1922 and was studied subsequently by mathematicians such as Selberg, Weil and Deligne among others. The mathematical interpretation of this multidimensional beta function is markedly different from that described in physics literature. This paper aims to bridge the gap between the existing treatments. Preserving all results of conformal field theories intact, developed formalism employing topological, algebro-geometric, number-theoretic and combinatorial metods is aimed to provide better understanding of the Veneziano amplitudes and, thus, of string theories.Comment: 92 pages LaTex, some typos removed, discussion section is added along with several additional latest reference

    Clinicogenomic factors of biotherapy immunogenicity in autoimmune disease: A prospective multicohort study of the ABIRISK consortium

    Get PDF
    BACKGROUND: Biopharmaceutical products (BPs) are widely used to treat autoimmune diseases, but immunogenicity limits their efficacy for an important proportion of patients. Our knowledge of patient-related factors influencing the occurrence of antidrug antibodies (ADAs) is still limited. METHODS AND FINDINGS: The European consortium ABIRISK (Anti-Biopharmaceutical Immunization: prediction and analysis of clinical relevance to minimize the RISK) conducted a clinical and genomic multicohort prospective study of 560 patients with multiple sclerosis (MS, n = 147), rheumatoid arthritis (RA, n = 229), Crohn's disease (n = 148), or ulcerative colitis (n = 36) treated with 8 different biopharmaceuticals (etanercept, n = 84; infliximab, n = 101; adalimumab, n = 153; interferon [IFN]-beta-1a intramuscularly [IM], n = 38; IFN-beta-1a subcutaneously [SC], n = 68; IFN-beta-1b SC, n = 41; rituximab, n = 31; tocilizumab, n = 44) and followed during the first 12 months of therapy for time to ADA development. From the bioclinical data collected, we explored the relationships between patient-related factors and the occurrence of ADAs. Both baseline and time-dependent factors such as concomitant medications were analyzed using Cox proportional hazard regression models. Mean age and disease duration were 35.1 and 0.85 years, respectively, for MS; 54.2 and 3.17 years for RA; and 36.9 and 3.69 years for inflammatory bowel diseases (IBDs). In a multivariate Cox regression model including each of the clinical and genetic factors mentioned hereafter, among the clinical factors, immunosuppressants (adjusted hazard ratio [aHR] = 0.408 [95% confidence interval (CI) 0.253-0.657], p < 0.001) and antibiotics (aHR = 0.121 [0.0437-0.333], p < 0.0001) were independently negatively associated with time to ADA development, whereas infections during the study (aHR = 2.757 [1.616-4.704], p < 0.001) and tobacco smoking (aHR = 2.150 [1.319-3.503], p < 0.01) were positively associated. 351,824 Single-Nucleotide Polymorphisms (SNPs) and 38 imputed Human Leukocyte Antigen (HLA) alleles were analyzed through a genome-wide association study. We found that the HLA-DQA1*05 allele significantly increased the rate of immunogenicity (aHR = 3.9 [1.923-5.976], p < 0.0001 for the homozygotes). Among the 6 genetic variants selected at a 20% false discovery rate (FDR) threshold, the minor allele of rs10508884, which is situated in an intron of the CXCL12 gene, increased the rate of immunogenicity (aHR = 3.804 [2.139-6.764], p < 1 × 10-5 for patients homozygous for the minor allele) and was chosen for validation through a CXCL12 protein enzyme-linked immunosorbent assay (ELISA) on patient serum at baseline before therapy start. CXCL12 protein levels were higher for patients homozygous for the minor allele carrying higher ADA risk (mean: 2,693 pg/ml) than for the other genotypes (mean: 2,317 pg/ml; p = 0.014), and patients with CXCL12 levels above the median in serum were more prone to develop ADAs (aHR = 2.329 [1.106-4.90], p = 0.026). A limitation of the study is the lack of replication; therefore, other studies are required to confirm our findings. CONCLUSION: In our study, we found that immunosuppressants and antibiotics were associated with decreased risk of ADA development, whereas tobacco smoking and infections during the study were associated with increased risk. We found that the HLA-DQA1*05 allele was associated with an increased rate of immunogenicity. Moreover, our results suggest a relationship between CXCL12 production and ADA development independent of the disease, which is consistent with its known function in affinity maturation of antibodies and plasma cell survival. Our findings may help physicians in the management of patients receiving biotherapies
    • 

    corecore