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Abstract: Visible-wavelength color and reflectance provide information about the geologic 

history of planetary surfaces. We present multispectral images (0.44 to 0.89 microns) of near-Earth 

asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global 

terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space 

weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). 10 

Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet (become bluer at 

shorter wavelengths), then brighten in the visible to near-infrared, leading to Bennu’s moderately 

blue average color. Craters indicate that the timescale of these color changes is ~105 years. We 

attribute the reflectance and color variation to a combination of primordial heterogeneity and 

varying exposure ages.  15 
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Main Text 

 

The near-Earth asteroid (101955) Bennu is the target of the Origins, Spectral Interpretation, 

Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) sample-return spacecraft 

(1). Prior to launch, telescopic observations of Bennu had identified it as a low-albedo object—5 

potentially indicating a carbon-rich composition—with a featureless, gently blue spectrum (blue 

signifies a negative spectral slope with respect to the solar spectrum, whereas red signifies a 

positive slope). This resulted in its classification as a blue (B-type) asteroid (2), a subclass of the 

broader carbonaceous (C-complex) group of small bodies. Bennu is a rubble-pile asteroid (3–6), 

accumulated from fragments of a larger parent body that was shattered by a catastrophic impact in 10 

the inner main asteroid belt ~1 Ga ago (3). Bennu eventually migrated from the main belt into its 

current orbit in near-Earth space (3). 

 

OSIRIS-REx measurements acquired during the initial phases of the mission showed that Bennu 

is dominated by hydrated clay-bearing minerals (phyllosilicates) and magnetite (7), indicating that 15 

water was present on and altered the composition of Bennu’s parent body (aqueous alteration). 

Organic compounds and carbonates have been discovered across the asteroid’s surface, supporting 

the hypothesis that B-type asteroids are carbon-rich (8, 9). Carbon-bearing species are optically 

opaque (as is magnetite) so could be responsible for Bennu’s low global normal albedo of 0.044 

(4,10). These findings suggest that Bennu’s composition may be representative of the primitive 20 

bodies that delivered water and organic molecules to the early Earth (11). 

 

Although the initial composition of an asteroid influences its global colors, physical properties 

such as particle size, surface roughness, and porosity can also influence these spectral 

characteristics, as can duration of exposure to the space environment. The surface colors of airless 25 

bodies are expected to be heavily altered by space weathering processes (12, 13), including 

bombardment by solar wind particles and meteoroids. On anhydrous planetary surfaces, such as 

the Moon and stony (S-type) asteroids, space weathering darkens and reddens spectral slopes in 

the visible and near-infrared (e.g., 12, 14). However, on primitive carbonaceous asteroids such as 

Bennu, and their meteorite analogs, space weathering effects are not well understood. Measured 30 

colors of primitive asteroids do not show consistent spectral relationships with surface exposure 

age (13, 15, 16, 17), nor do laboratory experiments of simulated space weathering on analogous 

meteorite and phyllosilicate samples: Some studies indicate that space weathering leads to bluing 

(13, 18-22 ), but others find that it leads to reddening (16, 20, 23, 24). This is likely because the 

initial composition and the physical structure of the materials play a role in the spectral changes 35 

observed (16, 20). To determine how space weathering affects low-albedo carbonaceous asteroids, 

we searched for a correlation between Bennu’s colors and the age of its surface features determined 

from morphology. The spatial distribution and geologic setting of varying colors on Bennu may 

also aid our understanding of the composition and evolution of the asteroid’s surface. 

 40 

Color observations of Bennu 

 

OSIRIS-REx obtained color observations of Bennu during two hyperbolic flybys on 14 March and 

26 September 2019, as part of the Baseball Diamond phase of the mission’s Detailed Survey (23). 

The OSIRIS-REx Camera Suite (OCAMS) (26) was used to acquire color images using the 45 

multispectral MapCam imager, which has four bands in the visible (VIS; 0.40–0.70 μm) and near-
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infrared (NIR; 0.70–2.5 μm) wavelengths. The MapCam bands—b′ (0.44–0.50 μm), v (0.52–

0.58 μm), w (0.67–0.73 μm), and x (0.82–0.89 μm)—are similar to those used by telescopic 

asteroid surveys (27) to infer asteroid composition and classify their spectra (28). Most asteroid 

observations have been limited to unresolved disk-integrated (globally averaged) spectra. We use 

spatially resolved MapCam color images (pixel scale ~25 cm) to investigate reflectance and color 5 

across Bennu’s surface. To establish relationships between color and surface morphology, we pair 

these color observations with higher resolution OCAMS PolyCam panchromatic images (2 to 5 

cm pixel–1) of the same locations. 

 

We radiometrically calibrated the MapCam and PolyCam images to units of reflectance (also 10 

known as radiance factor or I/F) (29). MapCam images were corrected to normal viewing 

conditions (0° solar incidence, 0° solar phase, and 0° observer emission angles) using a Robotic 

Lunar Observatory photometric function to assess albedo differences across the surface (30, 31). 

We subsequently map-projected and mosaicked the MapCam images using cartographic 

techniques developed for irregular planetary bodies (23,31,32). Band ratios and principal 15 

component analysis (PCA) were used to identify variations in multispectral images and distinguish 

regions with distinct spectral properties (29). To establish statistically meaningful relationships 

between color, reflectance, and morphological features, we mapped ~1600 boulders and ~700 

craters, then extracted their median spectra using established methods (31, 4, 33). We assessed 

spectral variations that were bounded by irregular morphological features using centimeter-scale 20 

3D digital terrain models produced with data from the OSIRIS-REx Laser Altimeter (OLA) (34-

36). We also compared our findings with near-infrared hyperspectral data acquired at lower spatial 

resolution using the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) (37). 

Bennu’s global photometric spectrum is moderately blue (spectral slope of –0.1701 μm–1) in 

MapCam data (0.44 to 0.89 μm), but spectral slopes vary from blue (negative, –0.25 μm–1) to red 25 

(positive, 0.05 μm–1) at spatial scales of as small as 2 m (Fig. 1). Bennu’s surface exhibits 

widespread heterogeneity in reflectance (Figs. 1 and 2). PCA shows that the first principal 

component (PC1) corresponds to albedo, whereas the second principal component (PC2) 

corresponds to changes in the overall spectral slope (from b′ to x), and PC3 indicates variation in 

the near-ultraviolet (from b′ to v) (figs. S1 to S3).  30 

 

Bennu’s globally blue surface is dominated by a coarse layer of decimeter- to meter-scale rocks 

with some centimeter-scale particles (regolith), which we refer to as average terrain. The spectral 

variability is associated with distinct geologic features, including boulders, craters, and areas of 

mass wasting (rock movement down geopotential slopes), which we use to distinguish color units 35 

on the asteroid (Table 1 and fig. S4, A and B). These units provide a framework for classifying 

commonly observed features on the surface. 

 

Boulders on Bennu 

 40 

Boulders are the primary source of heterogeneity on Bennu. Some individual boulders have VIS-

NIR absorption features at 0.55 μm (as previously observed (5)), 0.7 μm (Fig. 2D), and near 1 μm 

(as previously observed (38)). There are also outliers among the boulder population that do not 

correspond with a specific color unit.  

 45 
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Boulders have a wide range of normal reflectance values (0.032 to at least 0.26 (38)) that are multi-

modally distributed with two prominent peaks (Fig. 2A). The reflectance of boulders is not 

normally distributed and is most consistent with four Gaussians (31), or perhaps two or more non-

Gaussian components. We refer to boulders as bright or dark based on whether they are brighter 

or darker than the median reflectance of 0.049, which lies between the two prominent peaks of the 5 

reflectance distribution.  

 

Bright boulders have smooth surfaces, typically angular shapes, and have blue spectral slopes in 

the mid-VIS to NIR (MapCam v to x bands). However, unlike the average terrain, ~80% of the 

bright boulders are dark in the near-ultraviolet (near-UV; b′/v < 1; Fig. 2, fig. S4 A and B). The 10 

bright boulders (Fig. 3, A and B) appear to have similar sizes (are well-sorted) with diameters <10 

m.  

 

Dark boulders (reflectance ≤0.049) span a range of visible spectral slopes but are generally redder 

than the bright boulders in the mid-VIS to NIR wavelengths (Figs. 1 and 2, A and B). The dark 15 

boulders are less angular than bright boulders and commonly have rougher, more undulating 

surface textures (Fig. 3, C and D). They encompass a wide range of sizes (from decimeters to ~95 

m) and include all the large (⪆20 m) boulders on the asteroid. Although the average terrain lies 

between the bright and dark populations, dark boulders and smaller dark particles (presumably 

formed by boulder breakdown) appear to be the dominant material; this is illustrated by the close 20 

correspondence between Bennu’s average reflectance (0.0439 ± 0.002) and the reflectance peak 

of the dark boulder population (0.0450 ± 0.002) (Fig. 2A, gray dashed line). 

 

Color variation is also evident within individual boulders (Figs. 1 and 3). Sometimes this occurs 

between faces of an individual rock, usually large dark boulders (Fig. 3, C to H). These examples 25 

of intra-boulder color variation are associated with apparent exfoliation and fracturing of the rock 

(39) (Fig. 3, G and H) and in textures akin to weathering rinds—exterior crusts that appear 

discolored compared to faces that are potentially more recently exposed (Fig. 3, C and G). We also 

observe boulders that appear to be breccias, that is, composed of rock fragments cemented together 

as a result of large impacts on Bennu’s parent body (33, 38). In these boulders, 30 

spectrophotometrically distinguishable fragments (clasts) are embedded in a host matrix that has 

similar texture, reflectance, and color to the dark boulders (Fig. 3, E and F).  

 

A small population of boulders with very high reflectance (up to 0.26 (38)) shows evidence of an 

absorption feature at 1 μm (downturn in the x band). OVIRS data indicates that these boulders 35 

contain pyroxene (38). Pyroxene-bearing material appears in distinct clasts embedded within 

larger host rocks whose color and reflectance are similar to those of the dark boulders (Fig. 3I 

(38)); it also appears in smaller (meter-scale), isolated boulders that do not look brecciated. 

Pyroxene was probably inherited from Bennu’s parent body, where it was implanted by an 

impactor that may have originated from a fragment of (4) Vesta (38), the differentiated (not 40 

primitive) inner main-belt asteroid visited by the Dawn mission (40). Although their reflectance 

overlaps with that of the bright boulders, and their texture is like that of the breccias, we separate 

pyroxene-bearing boulders into their own category (Table 1) based on their distinct spectral shape 

in the VIS to NIR (v to x; Fig. 2, B and C). 

 45 
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Some boulders have an absorption feature at 0.7 μm (absorption depth of 2 to 10%). Similar 

absorption features have been observed in spectra of primitive asteroids and carbonaceous 

meteorites, where it was attributed to iron in some clay-bearing phyllosilicates (41). Boulders with 

the deepest absorptions at this wavelength span a wide range of reflectance (0.0364 to 0.0811); 

however, most (~60%) dark boulders tend to have a shallow (~1%) 0.7-μm absorption. Although 5 

this is at the limit of the 1% relative precision of OCAMS data (29), it is spatially coherent with 

individual boulders, giving us confidence that the feature is real (fig. S5). 

 

Color and surface processes  

  10 

Some areas of the surface are brighter in the near-UV (i.e., an upturn in the near-UV b′ band; b′/v 

> 1.01, or 1% greater than average), which we refer to as blue units. One of the bluest contiguous 

surfaces on Bennu is the eastern side of the boulder shown in Fig. 3G. Digital terrain models show 

this rock face is recessed relative to the western face of the boulder (Fig. 3H), and color data 

indicate that the recessed face has a steeper blue spectral slope. Conversely, the western face of 15 

the boulder is brighter and has a more neutral spectral slope, similar to the global average (fig. 

S4C). The bluer, recessed eastern face may be a fresher surface, more recently exposed to the space 

environment by thermal fracturing or exfoliation—ongoing surface processes on Bennu (39, 42). 

Similar patterns are observed on other boulders that appear to have been recently exfoliated (as 

indicated by layers with different relief). We also observe bluer-than-average near-UV slopes on 20 

the high-elevation rims (10 to 20 m higher than surrounding terrains) of equatorial craters that 

show recent indications of mass wasting (Fig. 4, A and B) (43). 

 

The correspondence between blue units and potentially less weathered surfaces suggests that 

enhanced near-UV reflectance is related to younger exposure ages on Bennu. The blue units are 25 

correlated with the relative band depth at 0.55 μm (fig. S6), indicating that the upturn observed in 

the near-UV index may be the result of an absorption feature at 0.55 μm. This absorption feature 

on Bennu has previously been attributed to magnetite (5), which is also detected in thermal 

emissivity spectra from OTES (7). However, this absorption feature could also result from 

graphitized carbon (44), and both magnetite and graphite are associated with space weathering 30 

(discussed further below). 

 

The color of the largest craters (>100 m) on Bennu is indistinguishable from that of the average 

terrain. However, many small (≤25 m) craters are redder than the Bennu’s average by ≥0.5σ in 

the near-UV to NIR, where σ is the full-width at half maximum of the global distribution of b′ to 35 

x spectral slopes (Fig. 4, C and D; Fig. 5, A and B). We refer to these as small reddish craters. By 

contrast, we identified no craters bluer than ≤ 0.5σ from Bennu’s global average b′ to x spectral 

slope (Fig. 5A). 

 

The size-frequency distribution of reddish craters implies that they are one of the youngest 40 

components of the global crater population (Fig. 5C). If so, we expect that reddish craters are 

among to the youngest surface features on Bennu (unlike the blue units described above). The 

absolute spectral slopes of the reddish craters appear to correspond with crater size (Fig. 5, A and 

B), and these craters are also darker than the global average (Fig. 5, D). In PolyCam images, the 

reddish craters display a texture distinct from the bulk of Bennu’s surface: unresolved at the pixel 45 

scale (i.e., <5 cm), indicating fine-particulate material (fig. S7). The largest examples of reddish 
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craters exist at mid to high latitudes (poleward of ± 20°), including the crater selected as the 

primary OSIRIS-REx sample collection site, Nightingale (56°N, 42°E).  

 

Evidence of freshly exposed material on Bennu  

 5 

Reddish craters and blue units on Bennu both correspond to apparently young exposure ages (Figs. 

3, G and H, and 4, C and D). To resolve this apparent contradiction, we consider crater production 

rates and size-scaling laws, stratigraphic relationships, and potential contributors to spectral slopes 

other than exposure age. 

 10 

The size-frequency distribution of the reddish craters has a power-law index of –2.1 ± 0.4 (31). 

The power-law index of the reddest subset of these craters (b′ to x spectral slopes ≥1σ from the 

global median value of –0.0698 μm–1) is –2.3 ± 0.6 (31). These values are close to that of the 

expected production of craters in the present-day main asteroid belt and near-Earth space over the 

last 100,000 years (predicted power-law index between –2.6 and –2.7; Fig. 5C) (47-48). The global 15 

crater population has a different power-law index of –1.1 ± 0.1 (31). At small diameters, the 

distributions of the reddish craters do not deviate from that of the expected crater production (Fig. 

5C), unlike the global population of craters on Bennu (33) and nearly all other closely studied 

small bodies (49). A mismatch at small diameters between observed crater populations and the 

expected crater production has been attributed to erasure processes (49), which efficiently erode 20 

and diminish small craters. The correspondence between the expected production of the red craters 

on Bennu and their actual distribution supports a young age: Unlike the global crater distribution, 

they have not yet experienced substantial erasure. 

 

We estimate the time required to produce the craters on Bennu using a crater production rate and 25 

a scaling law for crater size from impactor size (31). Assuming that the red craters have formed 

since Bennu’s arrival in the inner Solar System, we adopt the established crater production rate 

from the near-Earth object population (47, 48). Crater scaling relationships, however, are less 

certain owing to unknown material properties and the structure of rubble-pile asteroids. The Small 

Carry-on Impactor (SCI) experiment performed on asteroid Ryugu by the Hayabusa2 mission (50) 30 

showed that small impactors (~30 cm) can produce craters consistent with scaling laws that depend 

on gravity; craters formed in this gravity regime can be many times larger than the sizes expected 

from scaling laws governed by target material strength. The sizes of the reddish craters on Bennu 

are less than or similar to the diameter of the SCI crater (~18 m) (50). If gravity dominates the 

cratering process for small craters on Bennu (e.g., 51), the reddest subset of these craters are less 35 

than 105 years old (Fig. 5C). This is consistent with the expected timescales of space weathering 

on near-Earth asteroids (~105 years) based on returned samples of asteroid Itokawa (52) and 

laboratory experiments on primitive meteorites (20). Thus, it is plausible that the reddish craters 

are the most recent areas of surface exposure and represent the least weathered material on Bennu. 

 40 

Although recent surface exposure may explain the reddish craters on Bennu, in carbonaceous 

meteorites, redder spectral slopes in the VIS-NIR can also arise from fine particle sizes (<100 μm) 

(53). The smooth and unresolved appearance of the reddish craters on Bennu suggests that they 

possess finer-scale regolith (fines) than elsewhere on the surface (fig. S7). However, small craters 

on boulders also appear redder than the global average photometric spectrum, indicating that 45 

particle size is not the only factor (fig. S8). When the electrostatic forces acting on particles exceed 
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that of gravity and cohesion—as is often the case for micron-sized grains on asteroids—lofting 

occurs and preferentially removes fines (54). Simulations of electrostatic lofting show that 

detachment and escape of sub-millimeter particles is feasible on Bennu and likely occurs shortly 

after the formation of such fines (54). Although particle sizes <100 μm could contribute to 

reddening on Bennu, we anticipate that the loss of fines takes place on shorter timescales than the 5 

age of the reddish craters. However, if micron-scale particles are closely associated with freshly 

exposed materials, they could also produce the observed reddening. 

 

Longer infrared wavelengths also indicate younger exposure ages for reddish craters. The shape 

of the 2.7 μm hydration feature, which is ubiquitous on Bennu (7), is sharper and shifts to shorter 10 

wavelengths within reddish craters, including the Nightingale sample site (fig. S9A). This is 

consistent with laboratory space weathering experiments performed on carbonaceous meteorites 

(20), which show that the minimum of the hydration feature at ~2.7 μm moves toward longer 

wavelengths with prolonged exposure to space weathering processes. Thus, sharper band features 

with shorter minimum wavelengths within craters may signify more recent exposure. The blue 15 

equatorial crater at 1.06°N, 152.75°E (Fig. 4, A and B) appears to have a sharper absorption feature 

but a band minimum similar to the global average (fig. S9B), indicating that it may have an 

intermediate exposure age. Unlike spectral slope, the shape of this spectral signature is not 

expected to be influenced by particle size (20). 

 20 

The exposure age is less clear for the bluer-than-average, apparently broken boulder face in Fig. 

3, G and H. We can set some constraints from the blue units associated with equatorial craters. 

Since its time in near-Earth space, Bennu’s rotation rate has accelerated in response to surface 

scattering of sunlight and the emission of its own thermal radiation (10, 55), consequences of the 

Yarkovsky–O'Keefe–Radzievskii–Paddack (YORP) effect. The locations of two of the bluest 25 

craters (1.06°S, 152.75°E and 3.05°S, 128.79°E) correspond to an isolated equatorial region that 

experienced increased surface accelerations as Bennu’s spin period decreased from 5 hours to the 

present-day 4.3 hours (fig. S10) (10, 55), suggesting that this area has experienced surface mass 

movement at some point in the past 200,000 years (43). Thus, we infer that that the exposure age 

of blue units is ~200,000 years. 30 

 

Bue unit craters have also been overprinted by small reddish craters (Fig. 4D); we therefore 

presume that they are composed of the same underlying material, and that the blue unit craters are 

older than the reddish craters. This color trend of bluing with exposure time is consistent with 

some spectral studies of space weathering of carbonaceous meteorites (e.g.,18-22), but not 35 

previous surface-resolved observations of asteroids. 

 

We suggest that nonlinear space weathering occurs on Bennu’s surface. In this scenario, freshly 

exposed material is initially redder than the bulk of Bennu in the near-UV to NIR wavelengths (b′ 

to x) (first stage). During early space weathering, these surfaces brighten more rapidly in the near-40 

UV (b′) than in the mid-VIS to NIR (v to x), thereby increasing the b′/v band ratio (middle stage). 

This near-UV bluing may result from the deepening of an absorption near 0.55 μm, implying that 

magnetite or graphite abundance increases during the early stages of space weathering. Eventually, 

however, these color differences neutralize as the surface is brightened across the wavelengths 

observed by MapCam, and the downturn at 0.55 μm (v band) diminishes, leading to the gently blue 45 
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spectral slope that characterizes Bennu’s global photometric spectrum and the oldest craters (final 

stage). 

 

This space weathering progression is illustrated by craters that have been categorized on the basis 

of their spectral slope (Fig. 6). The first and middle stages are illustrated by the small reddish 5 

craters overprinted on blue equatorial craters (Fig. 4D). The middle and final stages may also be 

illustrated by the boulder in Fig. 3G, whose higher-relief, presumably older western face is brighter 

and has a more neutral spectral slope than the more recently exposed, bluer face. The final stage 

is illustrated by Bennu’s average terrain.  

 10 

The orientation of intra-boulder color variation provides further evidence of space weathering on 

Bennu. We examined 220 boulders with sizes ⪆ 5 m in the equatorial region (20°S to 20°N), where 

MapCam images have the most consistent viewing conditions, and calculated the azimuthal angle 

that maximizes blue-to-red color variation across each boulder (31). Fig. S11 shows the latitude of 

boulders with large color variation (b′ to x slope difference of >0.05 μm–1 between the two regions) 15 

as a function of the azimuthal angle of the blue-to-red direction (31). Bluer faces are preferentially 

oriented toward the equator (fig. S12). This may relate to solar exposure (e.g., heating or 

irradiation) and/or meteoroid bombardment, all processes that would preferentially affect 

equatorial latitudes (42, 56). We only observe this intra-color variation on dark boulders, perhaps 

owing to their larger sizes compared to other boulder types, or a different initial composition. 20 

 

Mechanisms for space weathering on Bennu 

 

Dark, optically opaque minerals (hereafter, opaques), such as nanophase iron, graphitized carbon, 

sulfides, and magnetite, are commonly produced by space weathering of primitive materials (19, 25 

19, 23, 44, 57). Laboratory studies have shown that phyllosilicates intimately mixed with certain 

carbon species (including graphite) and magnetite can lead to bluer and darker spectral slopes in 

the visible wavelengths (44) (fig. S4C and D). The link between bluing opaque minerals and space 

weathering implies that blue spectral slopes are the result of a mature, weathered regolith on 

primitive B-type asteroids, although they cannot fully explain the brightening in the near-UV to 30 

NIR observed on Bennu.  

 

As discussed above, studies of primitive asteroids and meteorites have contradictorily predicted 

both bluing and reddening with increased space weathering (e.g., 13-24). Ion and meteoroid 

bombardment lead to darkening and reddening of anhydrous silicate planetary surfaces; this has 35 

previously been attributed to the accumulation of nanophase and larger metallic iron particles, 

which form in response to the space environment (58). However, contrary to the bluing and 

darkening predicted from the production of graphitized carbon and magnetite, the formation of 

nanophase iron in low-albedo asteroids such as Bennu may have a reddening and brightening 

effect, owing to the higher reflectance of nanophase iron than that of the primitive materials found 40 

in carbonaceous meteorites (59).  

 

Space weathering trends observed on Bennu corroborate earlier studies (13, 44) that found that 

primitive asteroids, though dark relative to the asteroid population, are brighter in the UV than 

their primitive meteorite counterparts—that is, they are spectrally bluer at shorter wavelengths. 45 

Ion bombardment of primitive low-albedo meteorites in the laboratory leads to spectral bluing and 
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brightening (20). These spectral changes are attributed to the process of carbonization, whereby 

hydrogen is lost and crystalline carbon structures, such as graphite, are formed (57). Irradiation 

experiments on complex hydrocarbons have shown that carbonization can induce metal-like 

optical properties in carbonaceous material, which leads to bluing and brightening (17, 57). We 

propose that space weathering–induced carbonization or magnetite formation may have influenced 5 

the surface colors on Bennu, especially in dark materials that become bluer (from the v to x bands) 

and brighter (across all bands) with increased exposure age. 

 

Evidence for parent body heterogeneity  

 10 

Although space weathering may influence the spectral slopes on Bennu, the disparate boulder 

populations that we identify—which differ in terms of their reflectance, texture, and size—suggest 

that some of Bennu’s heterogeneity was inherited from its parent body. Dark boulders show a 

monotonic relationship of decreasing reflectance with increasing (redder) spectral slope, which is 

distinguishable from that of their bright counterparts (Fig. 2B) (31). Because space weathering is 15 

likely controlled by initial texture and composition, the difference in spectral slope trends between 

dark and bright boulders could result from the maturation of geologically distinct materials. 

Likewise, the less varied spectrophotometric properties of the bright boulders suggest that they are 

less susceptible to modification from space weathering or change on a different timescale (Fig. 2). 

 20 

Heterogeneity in boulder reflectance on Bennu may be the result of distinct rock types that 

fragment differently, leading to an observed difference in their size-frequency distributions (4). 

Different compositions of the dark versus bright boulders may account for the correlation between 

reflectance and thermal properties for boulders on Bennu (60). The dark boulders have lower 

thermal inertia, which is attributed to higher porosity (60), consistent with their rougher and more 25 

crumbly (friable) appearance (Fig. 3, C and D). Conversely, the apparently smoother, more 

consolidated and angular bright boulders (Fig. 3, A and B) tend to have higher thermal inertias, 

attributed to lower porosity (60). Distinct texture and porosity can follow from differing 

mineralogy, levels of compaction, or heating and aqueous alteration histories. 

 30 

The average blue spectrum of Bennu is consistent with serpentine or magnetite and serpentine, 

with some carbon (fig. S4, C and D). This composition is similar to that of Bennu’s presumed 

meteorite analogs, the CM and CI groups of carbonaceous chondrites, which are dominated by Fe- 

and Mg-bearing phyllosilicates, respectively. In the most intensely aqueously altered CI 

chondrites, the Fe is contained in oxides, sulfides, carbonates, and other minor species (61, 62, 35 

63).  

 

The tendency of dark boulders to be slightly redder and brighter in the near-UV (Fig. 2, A to C) 

may indicate that they have a higher overall abundance of organic molecules, compared to their 

bright counterparts. This composition manifests as lower reflectance and redder slopes in more 40 

freshly exposed surfaces, which develop into steeper blue slopes during the early stages of space 

weathering. This, along with the weak 0.7-μm absorption sometimes present in dark boulders (Fig. 

2D), is indicative of a higher proportion of Fe-bearing phyllosilicates than other boulders and 

implies that they represent a population of material from Bennu’s parent body that has experienced 

less aqueous alteration. A correlation between lower reflectance and a 0.7-μm absorption band is 45 
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consistent with moderately altered CM carbonaceous chondrites, which are among the darkest 

primitive meteorites with a nearly ubiquitous a 0.7-μm absorption feature (64).  

 

Some bright boulders contain veins of brighter material, which may be composed of carbonates 

(9). This implies a level of aqueous alteration that should also lead to the formation of magnetite 5 

(65). The lack of a near-UV upturn in carbonate-bearing boulders could signify that other phases 

influence their spectral characteristics. For example, bright boulders may be dominated by a 

hydrated mineral that is more absorbing at the longer wavelengths (so the reflectance is bluer).  

 

We expect vein-bearing boulders to contain less organic material if their reduced carbon was 10 

oxidized by fluids to form the observed carbonates (66). Thus, if both a low albedo and near-UV 

bluing are caused by the carbonization of organics via space weathering, we expect those 

spectrophotometric effects to be weaker in the vein-bearing rocks—as is observed (Fig. 2A and 

2C). Although graphitized carbon could explain the bluing observed in the more recently exposed 

faces of dark boulders, a UV upturn is also consistent with increasing abundances of magnetite, 15 

which has a blue spectral slope shortward of 0.5 μm (65). 

 

The presence of potential carbonate veins (9) in bright boulders signifies a greater degree of 

aqueous alteration than in their dark counterparts, suggesting they had an origin within the interior 

of Bennu’s parent body. In dark boulders, we do not find a clear spectral signature indicative of 20 

their provenance; however, their textures may provide clues. Brecciated boulders typically have a 

host-matrix similar in texture to the dark boulders, including examples with clasts of exogenic 

pyroxene; this implies that these rocks formed near the surface of Bennu’s parent body (38). 

Boulders on Bennu thus may have originated from different zones within the parent body. The 

multi-modal distribution of the boulder populations implies that different processes (or extents of 25 

processes), such as aqueous alteration and heating, led to their distinct spectrophotometric 

properties. 

 

Comparison with Ryugu 

 30 

Asteroid (162173) Ryugu, visited by the Hayabusa2 spacecraft, is also a low-albedo, carbonaceous 

near-Earth asteroid. Although both asteroids are thought to have come from primitive asteroid 

families in the inner main belt (67), Ryugu, unlike Bennu, appears to have experienced partial 

dehydration (68). The multi-band cameras onboard the two spacecraft use similar photometric 

filters in the visible wavelengths, so allow a direct comparison of the spectra from each (26, 31, 35 

68). Fig. S13 shows the areal distribution of the reflectance and near-UV to NIR spectral slope of 

each asteroid. The variation in reflectance on Bennu is 1.7 times that on Ryugu, and Bennu exhibits 

a bluer overall color. Though the standard deviations of the spectral slope distributions are similar 

(σ = 0.039 μm–1 and 0.034 μm–1 for Ryugu and Bennu, respectively), the distribution of color 

differs spatially. Ryugu shows large-scale latitudinal color differences: The latitudinal difference 40 

is ~1/2 the standard deviation of the global color variation (>99% confidence with mean difference 

of 0.52𝜎 between the redder mid-latitudinal and the bluer equatorial regions (27)), which has been 

attributed to regolith migration from the equator to mid-latitudes during the spin-down of Ryugu 

(68). A latitudinal color trend is also observed on Bennu, but the difference is small compared with 

its overall color variation (>99% confidence with mean difference of 0.21σ (31)). Bennu’s slightly 45 

bluer equatorial region may indicate the presence of more mature material, which is consistent 
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with its increasing rotation rate and the associated global patterns of mass movement across the 

asteroid (43). 

 

Unlike Ryugu, color variation on Bennu appears to be dominated by heterogeneity at the meter 

scale, likely driven by boulders. This suggests that the extent of recent large-scale mass wasting 5 

on Bennu may not have been as widespread as the effect of regolith mixing. Episodes of particle 

ejection have been observed from Bennu’s surface (42), redistributing its surface material over 

shorter timescales than those expected for mass wasting (69). Large-scale latitudinal spatial 

patterns may have been obliterated by particle ejection events, which overturns ~104 g of surface 

material per orbit (437 days) (69). Of the material lofted, most of the mass (70 to 85%) falls back 10 

onto Bennu’s surface (69). 

 

Young craters on Bennu tend to be redder than the average surface, whereas their young (small) 

counterparts on Ryugu are bluer than average (70). Because Bennu’s global photometric spectrum 

is bluer overall than Ryugu’s, the absolute spectral slopes of the craters on the two asteroids are 15 

similar (fig. S14). Hayabusa2 NIR observations showed that the freshly exposed interior of the 

artificial SCI crater on Ryugu does not exhibit a deep hydration band at 2.7 µm (70), suggesting 

that Ryugu’s dehydration is not a recent event and likely took place on the parent body (71). 

Although the colors of young craters on Ryugu and Bennu are similar, their hydration properties 

differ, suggesting that spectral changes in response to space weathering (e.g., bluing versus 20 

reddening) can be influenced by initial composition. 

 

Conclusions and prospects for sample return 

 

Bennu’s surface is highly diverse, encompassing primitive material potentially from different 25 

depths in its parent body (Fig. 7). A smaller proportion consists of exogenic material from another 

asteroid family delivered in a pre-disruption impact to the parent body (38). Although Bennu’s 

low average reflectance (0.044) (4,10) is dominated by the abundant dark boulders and particles 

formed by their breakdown, the limited latitudinal pattern in the observed heterogeneity indicates 

a well-mixed combination of disparate materials at spatial scales of 1 to 10 m.  30 

 

Inter-boulder variations in reflectance and texture appear to be primordial in origin, but variations 

in spectral slopes among craters and between individual rock faces appear to be linked to exposure 

age (Fig. 7). The young age of small reddish craters and the solar orientation of intra-boulder color 

patterns indicate that redder spectra are the least recently exposed surfaces. The underlying 35 

composition of dark materials on Bennu, which potentially contain a higher proportion of organic 

material available for carbonization, likely leads to initial near-UV bluing of any freshly exposed 

redder materials. Initial bluing could also occur with the production of magnetite in response to 

space weathering. With age, surface materials brighten and become more neutrally sloped, 

consistent with Bennu’s gently blue average spectral slope. This final stage of space weathering 40 

may result from accumulations of nanophase and larger metallic iron particles, which potentially 

have a brightening and reddening effect in low-reflectance and carbonaceous materials (59). It 

could also arise from the development of metal-like optical properties in Bennu surface materials 

due to progressively stronger carbonization effects, which eventually leads to brightening (57). 

 45 
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Our observations suggest that the OSIRIS-REx sample will contain materials with diverse origins 

and evolution even from a single location on the asteroid. Both the primary and back-up sample 

sites, Nightingale (56° N, 42° E) and Osprey (11.5° N, 87.5° E), are situated within small reddish 

craters. The redder colors and shorter 2.7 μm band minimum positions of materials in these craters 

imply that they are pristine and have experienced less modification from space weathering than 5 

the average Bennu surface, and that they potentially have a higher proportion of micron-scale 

grains. 
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Fig. 1. Color composite, reflectance, and band ratio maps of Bennu. (A) False-color Red-

Green-Blue color model (RGB) composite overlaid on a 0.55-μm (v band) normal reflectance 

map of Bennu. Color channels are: red, x/v (0.85/0.70 μm, mid-VIS to NIR spectral slope); 

green, w-band strength (depth at 0.70 μm, composition, fig. S5); and blue, b′/v (0.47/0.55 μm, 

near-UV slope). (B) Normal reflectance. (C) The x/v band ratio, a proxy for the mid-VIS to NIR 5 

spectral slope, where warmer values correspond to redder spectral slopes; values >1 are redder 

than the global average, and values <1 are less red than the global average. (D) The b′/v band 

ratio, a proxy for the near-UV slope, where higher values correspond to bluer spectral slopes; 

values >1 are bluer than the global average, and values <1 are less blue than the global average. 

All maps range from 65°N to 65°S latitude, 0–360°E longitude. 10 

  



 Submitted Manuscript: Confidential 

23 

 

  
Fig. 2. Variation of boulder color and reflectance on Bennu. (A) Reflectance distribution of 

boulders (>5 m) on Bennu. The distribution is multi-modal with more than one Gaussian 

component (31). Shading and colors indicate different classifications of boulders, as indicated in 

the legend. (B) Normal reflectance versus absolute spectral slope of the same boulder populations; 5 

some individual boulders are indicated in the legend. Dark boulders tend to be redder, and their 

reflectance monotonically decreases with increasing (redder) spectral slopes, whereas bright 

boulders are bluer and more scattered (31). (C) The near-UV index (b′/v band ratio) versus the b′ 

to x spectral slope. Dark boulders tend to have a steeper near-UV slope relative to the global 

average (>1), whereas bright boulders are more often spectrally flat or show a downturn in the 10 

near-UV (from the b′ to v bands). (D) The relative band depth at 0.7 μm (w band) versus the b′ to 

x spectral slope. Some boulders show an absorption feature at 0.7 μm (relative w band depth >0), 

indicative of Fe-bearing phyllosilicates. The boulders named Roc (23.6°S, 25.3°E; Fig. 3C) and 
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BenBen (46.8°S, 127.5°E) are two of the largest on Bennu; both are dark. The blue rock (39.80°S, 

263.02°E) is shown in Fig. 3E.  
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Fig. 3. Examples of boulder color and morphology. All RGB color composite images are shown 

on the same color scale as Fig. 1A.  Bright boulders near 17.76°S, 74.74°E in (A) MapCam (25 

cm pixel–1) and (B) PolyCam (5.25 cm pixel–1) images, indicated by white arrows. The higher-

resolution panchromatic PolyCam image (B) shows the angular morphology of bright boulders. 5 

Dark boulders near (C) 23.6°S, 25.3°E; and (D) 3.92°N, 178.98°E, some of which display intra-

boulder color variation. This includes Roc (C), which is the largest boulder observed on Benn at 

~100 m in the longest observable dimension. (E) A dark boulder with resolvable clasts that appear 

distinct from the host matrix (4.62°S, 248.95°E). (F) Digital terrain model of the same boulder. 

The three arrows highlight the same clast in both panels. (G) A rock at 39.80°S, 263.02°E. The 10 

darker and bluer portion corresponds to a lower-relief fractured face in the digital terrain model 

(H) (I) A boulder that appears to contain clasts and be brecciated; the bright clasts with a greenish 

color signature are indicative of pyroxene in this false color scale (J) a higher-resolution PolyCam 

image (5.25 cm pixel–1) of the same boulder. A wider context image is shown in fig. S15. 

  15 
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Fig. 4. Examples of crater color. (A) The b′/v band ratio map of equatorial craters at 3.05°S, 

128.79°E (black dashed line) and 1.06°S, 152.75°E (red dashed line), which have a higher near-

UV index and are considered blue units. (B) An elevation map of the same equatorial craters in 

(A). These blue units correspond with areas that show recent indications of mass movement away 5 

from regionally high elevations, such as from crater rims. Black arrows correspond locations of 

previously mapped mass movement (43). (C and D) RGB color composites images of small craters 

(indicated by white arrows), shown on the same color scale as Fig. 1A. As indicated by their color, 

these craters are consistently redder than Bennu’s average terrain, with positive to slightly blue b′ 

to x spectral slopes. The blue crater indicated by the dashed black line in (A), (B), and (D) has 10 

been overprinted by several smaller reddish craters.  



 Submitted Manuscript: Confidential 

27 

 

 
Fig 5. Color, reflectance, and size distribution of Bennu’s craters. (A) The b′ to x spectral slope 

distribution of craters on Bennu, which are not normally distributed. (B) Crater diameter as a 

function of the crater’s median b′ to x spectral slope. Craters have more negative spectral slopes at 

higher size and frequency; this suggests that redder (more positively sloped) craters are younger. 5 

(C) The crater size frequency distribution on Bennu for craters classified on the basis of their b′ to 

x spectral slopes. The black line shows the expected crater production for 100,000 years in near-

Earth space (cumulative power-law index of –2.7), assuming cratering in the gravity regime (51). 

The size-frequency distribution of the reddish craters (purple circles) is more consistent with the 

black line at small diameters than that of the global crater population (gray circles). The reddest 10 

subset of these craters (red circles) fall below the black line, and appear to have formed more 

recently than 100,000 years ago. (D) The normal reflectance of craters on Bennu as a function of 

b′ to x spectral slope. Like dark boulders, the reflectance of craters monotonically decreases with 
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increasing (redder) spectral slopes (31). Supporting information for the relationship between 

spectral slope and crater size and frequency is shown in fig. S16.  
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 Fig. 6. The evolution of crater 

colors from MapCam data. Older 

craters have bluer overall spectra 

from b′ to x (Fig. 5); here we show 

variations in each filter separately. 5 

(A) The average absolute 

reflectance spectra of all craters 

within a given b′ to x slope range 

(see Fig. 5A). The light gray box 

encompasses the range of absolute 10 

radiometric uncertainty (29), while 

error bars show the relative 

precision of OCAMS 

measurements (26). Craters become 

brighter as their spectral slopes 15 

steepen. (B) The same reflectance 

spectra shown in (A), normalized at 

0.55 μm. The progression from the 

mid-VIS to NIR (v to x bands) 

dominates the evolution of crater 20 

spectra, which mature toward more 

negative slopes. In the near-UV, 

spectra with intermediate b′ to x 

slopes steepen (31). This may result 

from more rapid brightening in the 25 

near-UV relative to longer 

wavelengths, a deepening of 

absorption feature at 0.55 μm (v 

band), or both. As a result, crater 

spectra show a non-unidirectional 30 

change near the b′ band as they age. 
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Fig 7. Proposed model of color and reflectance diversity. We propose that distinct rock types formed at different depths on Bennu's 

parent body. After the parent body was catastrophically disrupted by a giant impactor, Bennu accumulated from its debris (4-6) and 

inherited these distinct materials, leading to the observed heterogeneity among boulders on Bennu. Since Bennu's formation and 5 

subsequent transit to near-Earth space, it has been altered by exposure to the space environment, which ultimately results in its 

moderately blue global color. Small near-Earth impactors also continually refresh the surface, creating craters of comparatively fresh, 

reddish material, which weather towards bluer colors on a timescale of ~105 years. 
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Table 1. Adopted color units on Bennu and their distinguishing properties.  

 

Color Unit Distinguishing Properties 

Bright boulders Normal reflectance from 0.049 to 0.074. Bluish spectral slopes slightly 

steeper than the global average in the mid-VIS to NIR wavelengths (0.52 to 

0.96 μm) but often spectrally flat or show a downturn in the near-UV 

wavelengths (0.44 to 0.50 μm; MapCam b′ band). Diameters <10 m. 

Dark boulders Normal reflectance from 0.034 to 0.049, overlapping with the average 

reflectance of Bennu (0.044). Slopes tend to be redder in the mid-VIS to 

NIR wavelengths (0.52 to 0.96 μm) and often show an upturn in the near-

UV wavelengths consistent with the global average. Diameters range from 

decimeters to 95 m. 

Fe-bearing 

phyllosilicate 

boulders  

Absorption feature at 0.70 μm (determined from a relative band depth >1% 

in the MapCam w band). Wide range of reflectance, most often overlapping 

with the dark boulders. 

Pyroxene-

bearing boulders  

Absorption feature beyond 0.89 μm (determined from a downturn in the 

MapCam x band relative to the w band) due to pyroxene (36). Reflectance 

up to 0.26 (36). Can occur as discrete boulders or pyroxene-bearing clasts 

in a dark boulder–like matrix. 

Blue units Boulders and craters showing an upturn in the near-UV wavelengths that 

exceeds that of the global average photometric spectrum, possibly resulting 

from an absorption at 0.55 μm.  

Reddish craters Small (<25 m diameter) craters that are ≥0.5σ redder than Bennu’s global 

average (median) and contain material that is not resolved at ~2 cm pixel–1.  

Breccias Medium (~5 m) to large (>10 m) boulders with embedded clasts (tens of 

centimeters) whose spectrophotometric properties are distinct from the host 

matrix, which resembles the dark boulders. 

Average terrain Areas absent of large boulders (⪆20 m) that have a photometric spectrum 

similar to the global average (median). 
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Materials and Methods 

1. Image acquisition and calibration 

PolyCam images were acquired under varying imaging conditions in the Detailed Survey mission 

phase (Error! Reference source not found.,Error! Reference source not found.), and MapCam 

images were collected on 14 March 2019 (Baseball Diamond Flyby 2) and 26 September 2019 5 

(Baseball Diamond Flyby 2b). OCAMS images were radiometrically calibrated, corrected for 

charge smear, and converted into units of reflectance (I/F or radiance factor) using previously 

described techniques (Error! Reference source not found.). Calibrated OCAMS data have a 5% 

absolute radiometric uncertainty and a 1% relative uncertainty (Error! Reference source not 

found.). PolyCam images were used only for geologic context so were not photometrically 10 

corrected. MapCam images were photometrically corrected to solar phase (α), incidence (i), and 

emission (e) angles of 0°. Correcting (i, e, α) to 0°,0°,0° converts the reflectance data into a 

measure of normal reflectance (Error! Reference source not found.). Photometric correction 

used a Lommel-Seeliger disk function and the Robotic Lunar Observatory (ROLO) phase function 

(Error! Reference source not found.). The ROLO model is preferred for correction to 0° phase 15 

because it accounts for Bennu’s small opposition surge (Error! Reference source not found.), 

which is slightly stronger in the b′ band (versus the other photometric filters). The accuracy of the 

correction is dominated by the accuracy of the global 3D tessellated digital terrain model (DTM) 

used to calculate the photometric angles and the registration of the images to that shape model. 

We used an OLA-based shape model (v20) with a 20 cm facet size for photometric correction 20 

(Error! Reference source not found.). 

2. Image mosaicking and photogrammetric control 

 

Image mosaicking was performed using a version of ISIS3 (Error! Reference source not found.) 

modified to support processing with tessellated 3D shape models. Precise co-alignment between 25 

different filter images is imperative for spectral analysis. It is assumed that color images are 

acquired in sets where each filter is taken in some consecutive order and as close in time as 

possible. To achieve color registration of MapCam images, the photogrammetric control process 

is performed in two stages.  

  30 

The first stage is focused on spatial registration between overlapping images and accurate 

alignment with a DTM; we used the 80 cm mean facet size v28 shape model of Bennu by updating 

the existing model (Error! Reference source not found.) using stereophotoclinometric techniques. 

The initial image control network was created with a single MapCam filter and exposure time; we 

used the v band (0.55 μm) at the longest exposure time (18.29 ms). Long exposures have the 35 

highest single-to-noise ratio for images of Bennu’s dark surface materials but can saturate very 

bright features. We discarded saturated pixels in our analysis. The photogrammetric control 

process involved global registration of all v band filter images, and used OCAMS image 

mosaicking procedures described elsewhere (Error! Reference source not found., Error! 

Reference source not found.). The adjusted camera pointing for each individual v band image 40 

after bundle adjustment resulted in an improvement in the registration between overlapping images 

and the registration between images and the modeled terrain of Bennu. The improvement was 

evaluated by creating a basemap with the corrected v band images and comparing it with a shaded 

relief of the DTM. 



 

 

3 

 

The second stage involved creating individual color sets by pairing each corrected v band image 

with a corresponding remaining filter acquired close in time. The photogrammetric control 

procedure involves adjusting the camera pointing of the remaining filters within a color set directly 

to the corresponding newly adjusted v band image. This process ensures that the camera pointing 5 

of each remaining filter image matches that of the v band. The end results are maps in each 

MapCam band (b′, v, w, x) and span 0–360° longitude and ±65° latitude.  

To create color cubes, we performed subpixel image-to-ground and image-to-image registrations. 

The b′/v ratio (0.47 μm/0.55 μm) represents the near-UV index. The x/v ratio (0.86 μm/0.55 μm) 

represents the mid-VIS to NIR slope. We also calculated the relative band depth of the v (0.55 μm) 10 

and w (0.7 μm) bands using an equation for relative band depth (Error! Reference source not 

found.). Band ratio maps were normalized against Bennu’s median global values, and therefore 

emphasize variation from the average. We applied a 7 × 7 boxcar lowpass filter combination to 

reduce speckle noise in the band ratio cubes. Stray light was also reduced using a cube-to-cube 

normalization procedure for the w (0.7 μm) relative band map.   15 

3. Principal component analysis of color mosaics 

 

We performed a principle component analysis (PCA) on the color data to identify the maximum 

variance of spectra from Bennu. We used MATLAB’s built-in PCA functionality (Error! Reference 

source not found.), which returns the principle component (PC) scores for each pixel, mapped into 20 

the first, second, and third components. Subsequently, we identified spectral features by selecting 

portions of the histogram of each PC and calculating the average spectrum of the pixels that fell 

within the high and low ranges of the PC, as determined by examining geologic features (figs. S1 

to S3).  

 25 

Before performing PCA, we applied a Gaussian filter (2 pixel kernel width) to the individual color 

bands to mitigate singe-pixel noise. We removed shadows from the maps such that spectral 

variations within those shadows did not influence the PCA. To remove shadows, we set all pixels 

with an albedo less than 0.03 to null. Any pixel removed from a single band was removed from all 

bands. The first principal component (PC1) shows a wide range in albedo, whereas the second 30 

(PC2) discriminates changes in the overall spectral slope (from b′ to x), and PC3 indicates variation 

in the near-ultraviolet (from b′ to v) (figs. S1 to S3). PC4 is the noise floor and reveals the areas 

where scattered light and incomplete smear correction impact the data at a scale of about 0.5%. 

The eigenvalues and statistics obtained from the PCA performed on the four MapCam bands is 

given in table S1. 35 

4. Mapping and classifying geologic features on Bennu 

Boulders were mapped with polygons in ARCMAP on Bennu’s MapCam color mosaics. The dataset 

includes 1590 boulders and we consider it a complete, representative population down to 

13.55 ± 2.35 m in diameter, although many boulders as small as 1.5 m were also included in this 

analysis. Separate boulder populations have previously been identified based on albedo, but did 40 

not have sufficiently well-constrained photometry to assess their distributions (Error! Reference 

source not found.).  

 



 

 

4 

We determined that the histogram of the MapCam v band normal reflectance observed for each 

boulder (Fig. 2A) has a multi-modal distribution by testing whether the data were normally 

distributed using the Anderson-Darling test, and subsequently using the MCLUST routine in R 

(Error! Reference source not found.) to determine the number of Gaussian components present 

in the distribution. These tests indicate 99% confidence that the boulder reflectance data presented 5 

are not drawn from a population having a single normal distribution. The MCLUST routine identified 

a 4-component Gaussian mixture as the best fitting model of the data, although any multi-modal 

distribution is a better fit than a unimodal one. The mean v band reflectance and standard deviations 

of the 4-component model are 0.0412 ± 0.003, 0.0447 ± 0.002, 0.0551 ± 0.004, and 0.075 ± 0.020, 

and the number of boulders falling into each component are 341, 621, 619, and 10. These values 10 

indicate that the dark boulders may comprise two separate populations, or that our thresholding 

procedures to remove shadows are influencing the spectrophotometric statistics of the lowest-

reflectance surfaces. 

 

We distinguished between the low- and high-reflectance boulder populations by thresholding at a 15 

v band reflectance value of 0.049, which is the median between the two visible peaks of the boulder 

reflectance distribution. Based on the presence of composition indicators, we classified boulders 

into Fe-bearing phyllosilicate or pyroxene-bearing boulders on the basis of their w-band strength 

wbs = w / (0.5v + 0.5x), using the median wbs value ±3 times the median absolute deviation (MAD) 

for thresholding. The MAD is a standard statistical method of measuring dispersion and identifying 20 

outliers. Fe-bearing phyllosilicate boulders had low wbs values (less than median(𝑤𝑏𝑠) −
3MAD(𝑤𝑏𝑠)), signifying an absorption at 0.7 μm. Pyroxene-bearing boulders had high wbs values 

(greater than median(𝑤𝑏𝑠) + 3𝑀𝐴𝐷(𝑤𝑏𝑠)), signifying an absorption longward of 0.85 μm and 

a negative b′ to v reflectance slope. We manually inspected boulders that were close to the 

classification boundaries to confirm their classification. The four distributions identified by 25 

MCLUST have similar mean v-band reflectance values to those from the boulder categories 

identified in this manual classification. The agreement between the different techniques applied 

improves our confidence that multiple populations of boulder types are present on Bennu.  

 

For the calculations of the b′ to x spectral slope for boulders and craters, we adapted an equation 30 

(Error! Reference source not found.) for the MapCam bands: 

𝑅�̅� = 1 + 𝛾(𝜆𝑖 − 0.55𝜇𝑚)                                  eq. S1 

where 𝑅𝑖 is the reflectance in each band (b′, v, w, x) normalized to the v band, 𝜆𝑖 is the effective 

wavelength (in microns) of each band (0.473, 0.550, 0.698, 0.847), and 𝛾 is the slope of the fitted 

line, constrained to a value of unity at 0.55 μm.  35 

 

We determined the relationship between reflectance and the b′ to x spectral slope by first 

conducting an Anderson-Darling normality test for both variables, which indicated ≫99% 

confidence that neither variable is normally distributed. We therefore conducted a non-parametric 

correlation test, Kendall’s Tau. For Kendall’s Tau, as with other correlation metrics, –1 ≤ 𝜏 ≤ 1, 40 

and 𝜏 = 0 when variables are independent. We found significant evidence (p ≪ 0.01) to reject the 

null hypothesis and conclude that dark boulder reflectance and spectral slope have a moderate, 

monotonically decreasing relationship (𝜏 = –0.43). We conducted the same tests for the bright 

boulders, among which boulder reflectance and spectral slope have a weaker monotonically 

decreasing relationship (p ≪ 0.01, 𝜏 = –0.29). 45 
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Crater identification within ± 60 latitude was performed using panchromatic PolyCam image data 

(not MapCam color images) acquired during the Approach and Detailed Survey phases of the 

OSIRIS-REx mission (Error! Reference source not found.,Error! Reference source not 

found.).  The Approach images provide global coverage at approximately ~30 cm pixel–1 and are 

suitable for identifying and measuring craters with diameters larger than ~30 m (Error! Reference 5 

source not found.).  The Detailed Survey images provide complete coverage of the surface in 

latitudes ±60 at low emission angles and with an average of ~5 cm pixel–1 (Error! Reference 

source not found.), and permit identification and measurement of craters to diameters <1 

m.  Images were displayed over Bennu’s shape model using the SMALL BODY MAPPING TOOL 

(SMBT (Error! Reference source not found.)), which provides continuously adjustable zoom 10 

levels, brightness/contrast control, and manipulation of viewing direction of the shape 

model.  Such manipulation allowed us to set different image parameters to search for features of 

all scales and brightness levels within the images.  Craters were identified by morphology 

characteristics, primarily via circular depressions, sometimes with particle-size contrasts between 

the crater interior and exterior.  Craters were marked using SMBT’s circle or ellipse tool, which 15 

records the location and geometry of the circle or ellipse in the coordinate system of the shape 

model.  We subsequently confirmed that >90% of the craters identified in PolyCam images have 

morphological expression in the OLA data (Error! Reference source not found.). 

 

The crater database of sizes and locations was then correlated with the color data set to identify 20 

color trends of the craters. Craters were manually registered with Bennu’s global color mosaics in 

ARCMAP. We also debiased the color statistics of overlapping craters, by only using the surface 

area (pixels) belonging to each crater to calculate statistics. We assume smaller craters were 

created more recently, thus large craters with overlapping small craters were clipped to remove the 

shared pixels that belonged to smaller craters. The dataset includes 706 craters; we consider it to 25 

be a complete population down to 3.10 ± 0.4 m in diameter, following (Error! Reference source 

not found.). The power law index of the crater size frequency distributions was determined using 

the methods described in (Error! Reference source not found.) for boulder distributions. 

 

5. Analysis of the crater colors, size-frequency distribution, and production function 30 

 

The absolute spectral slope from the b′ to x bands was calculated for the global list of craters. The 

values for each were then compared directly to the global Bennu average surface b′ to x slope (–

0.1701 with standard deviation 0.1003). Craters were extracted from the list based on their 

measured color relative to the global color. The subset of craters that were 1σ redder than average 35 

had b′ to x slopes greater than –0.0701 (a total of 79 craters met this criterion, and only three were 

more than 2σ redder). The 255 craters that were 0.5σ redder than average were also extracted. 

 

We determined the relationship between crater reflectance and the b′ to x spectral slope by first 

conducting an Anderson-Darling normality test for both variables, indicating ≫99% confidence 40 

that neither variable is normally distributed. Kendall’s Tau test indicated significant evidence (p 

≪ 0.01) to reject the null hypothesis and conclude that crater reflectance and spectral slope have a 

moderate, monotonically decreasing relationship (𝜏 = –0.54). 

 

The differences in the b′/v band ratio of craters categorized by their overall b′ to x spectral slope 45 

(Fig. 6) were statistically assessed using a one-way analysis of variance (ANOVA). To perform 
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this test, we assumed that the b′ to x spectral slope is dominated by the change from v to x and is 

thus independent from the b′/v band ratio; the spectral changes in Figure 5 support this assumption. 

The results, summarized in table S2, demonstrate that the F value, F, is larger than the F statistic, 

Fcrit, and so we can reject the null hypothesis. Additionally, the mean and median of each category 

indicate steeper b′/v band ratios for intermediate b′ to x spectral slopes; that is, craters with the 5 

most positive and negative b′ to x spectral slopes are less blue in the near-UV.  

 

The crater production function is a combination of the expected flux of impactors for a near-Earth 

object, their typical impact speeds, and the crater scaling expected for impacts into a small rubble-

pile asteroid. The flux of impactors in the size range of 1 to 10 m has been measured via bolide 10 

detonations in Earth’s atmosphere (Error! Reference source not found.). The power-law size 

distributions of these impactors match that for larger bodies (Error! Reference source not found.) 

and are combined to produce an expected flux of impactors per year per square kilometer of a near-

Earth asteroid. 

 15 

We used the gravity-regime crater scaling relationship (Error! Reference source not 

found.,Error! Reference source not found.), incorporating the surface gravity of Bennu 

(0.0000615 m s–2 (Error! Reference source not found.)) and a typical target grain size of 30 cm. 

Impactor density was assumed to be 2300 kg m–3, target bulk density was assumed to be that 

measured for Bennu of 1190 kg m–3 (Error! Reference source not found.), target grain density 20 

was assumed to be 2300 kg m–3, solid target disruption energy was assumed to be 1000 J/kg, and 

an impact speed of 18.5 km s–1 was used to represent the mean impact speeds between near-Earth 

asteroids (Error! Reference source not found.).  

 

6. Calculating spectral slopes across individual dark boulders 25 

 

We examined nadir MapCam images taken during the re-fly of Baseball Diamond Flyby 2 (26 

September 2019) and identified 220 large boulders between ±20 in latitude (boulders outside of 

this latitude range were imaged with emission angles >20). The rim of each boulder was manually 

traced in MapCam images. Based on the manually traced boulder outline, we calculated the 30 

azimuthal angle that maximizes the blue-to-red color variation within each boulder. We calculated 

the difference in the average b′ to x spectral slope between the two regions within the outline of 

each boulder, which is divided by a line segment with a variable angle crossing the centroid of a 

boulder. Pixels with incidence/emission angles > 60 and I/F < 0.01 were discarded from the 

calculation. The optimal angle was identified via a grid-search between 0 to 360 range with 30 35 

intervals in each boulder image. The determined angles were converted to azimuthal angles shown 

in fig. S11 by georeferencing the images to an equirectangular projection.  

 

Fig. S12 shows intra-boulder variation. Whether such color variation could be a product of the 

illumination conditions (e.g., inclusion of sub-pixel scale shadows) was evaluated by calculating 40 

the root mean square (RMS) error of the radiance factor using multiple images taken with slightly 

different viewing angles during the flyby sequence. The distribution of the RMS deviation showed 

limited correlation with the observed intra-boulder color variation; thus, the observed variation 

should at least partly reflect the surface property of boulders. 

 45 

7. Spectrophotometric trends and comparison between Bennu and Ryugu 
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The I/F distribution (fig. S13) was calculated by using the global observation images: PolyCam 

images of Bennu taking during the OSIRIS-REx mission’s Approach and Preliminary Survey 

phase (20181113T041412S224_pol_iofL2pan to 20181113T083212S153_pol_iofL2pan) and 

ONC-T (Optical Navigation Camera) v band images of Ryugu taken during the Hayabusa2 5 

mission’s Box-A Operation (hyb2_onc_20180712_064513_tvf_l2d to 

hyb2_onc_20180712_134452_tvf_l2d). These images were chosen due to their similarity in 

resolution (~2 m pixel–1) and phase angle (18–19), minimizing observational biases between the 

OCAMS and ONC data sets. To account for the different shapes of the two asteroids, the I/F values 

were photometrically corrected to an observation geometric condition (i, e, α) = (18, 0, 18). 10 

Similar-resolution shape models (~3 m facets) were used for the correction (stereophotoclinometry 

v20 (Error! Reference source not found.) for Bennu and stereophotoclinometry v20180717 for 

Ryugu). The photometric functions and parameters were taken from the fitting conducted by using 

images taken under a wide range of conditions (Error! Reference source not found., Error! 

Reference source not found.). Pixels with incidence or emission angles >60 and I/F < 0.01 were 15 

discarded because of the uncertainties in the photometric correction and their low signal-to-noise.  

 

I/F pixels were mapped to an equirectangular projection. Each mesh in the equirectangular 

projection was weighted with a cosine of latitudes to account for the areal distortion to create the 

areal frequency histogram. Each histogram was normalized by its total area. The photometrically 20 

corrected images were binned in 32 × 32 pixel bins to calculate the distribution at a pixel scale of 

~64 m.  

 

The same method was applied to the color distributions (fig. S13). We used color images from 

MapCam during the OSIRIS-REx Baseball Diamond Flyby 2b for Bennu and ONC-T the Box-A 25 

Operation for Ryugu (Error! Reference source not found.). The difference in the resolution was 

compensated for by conducting an 8 × 8 pixel binning of the MapCam images.  

 

For the comparison between Bennu and Ryugu, the b′ to x spectral slope was calculated as: 

𝑏′/𝑣−𝑥/𝑣

𝜆𝑏′−𝜆𝑥
                                                                 eq. S2 30 

The effective wavelengths are slightly different with the MapCam and ONC-T filters (𝜆𝑏 = 0.4798 

μm, 𝜆𝑣 = 0.5489 μm, and 𝜆𝑥 = 0.8573 μm for ONC-T (Error! Reference source not found.)). 

This effect was quantified by calculating the difference in band ratios of the 398 C-complex 

asteroids surveyed by Small Main-Belt Asteroid Spectroscopic Survey, Phase II (SMASS2) 

(Error! Reference source not found.) using the respective wavelengths of the two cameras. The 35 

difference in the band ratios was confirmed to be ~1% (RMS error of 1.1 % for b′/v and 0.99% for 

x/v) and thus would not affect our qualitative results.  

 

A Student’s t-test was used to assess the significance of the difference between the means of 

Gaussian-like equatorial and mid-latitude color distributions on Bennu (fig. S13D). The means for 40 

Ryugu and Bennu are significantly different with p ≪ 0.01. This trend holds after the photometric 

correction (Error! Reference source not found.) (p ≪ 0.01). Thus, the slight bluing of Bennu’s 

equator relative to the mid-latitude regions is likely not due to observational biases. 
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8. Spectral Analogs of Bennu 

 

Although carbonaceous meteorites are expected to be a reasonable compositional analog for 

Bennu, the reflectance of Bennu is lower than that of most meteorite samples. To reproduce the 

spectral reflectance properties and variations seen on Bennu, we produced a series of physical and 5 

simulated analogs consisting of two-component mixtures of an Mg-rich phyllosilicate, saponite, 

magnetite and one of two forms of carbon, graphite or lampblack (shown in fig. S4 C and D).  

 

Simulated analogs (fig. S4 D) used the samples and procedures outlined in (Error! Reference 

source not found.). For physical analogs, we produced a series of them spanning a range of 10 

carbonaceous material abundances (0–10 wt.%). We used saponite (containing ~25 wt.% 

dolomite) as the primary phyllosilicate because Bennu may have been extensively aqueously 

altered, and as aqueous alteration proceeds, the abundance of saponite to serpentine in 

carbonaceous chondrites increases, and the phyllosilicates become increasingly Mg-rich (e.g., 

Error! Reference source not found., Error! Reference source not found., Error! Reference 15 

source not found., Error! Reference source not found.). Because it is not possible to extract 

enough carbonaceous material from carbonaceous chondrites to produce sufficient quantities of 

simulants, we used fine-grained amorphous carbon or graphite because it is not possible to extract 

enough carbonaceous material from chondrites to produce sufficient quantities of simulants. The 

amorphous carbon (lamblack) and graphite are spectrally featureless in the 0.3–5 µm region 20 

(Error! Reference source not found.), and both induce a bluing (reflectance decreasing toward 

longer wavelengths) in mixtures with phyllosilicates (Error! Reference source not found., Error! 

Reference source not found.), (fig. S4 C). 

 

The series of saponite+lampblack and saponite+graphite mixtures that we produced have 25 

carbonaceous phase abundances that encompass (and exceed) the range of carbonaceous phase 

abundances in carbonaceous chondrites of types CI1 and CM1-2 (Error! Reference source not 

found.). 

 

Samples used: Our mixtures included a natural (but partially processed by the supplier) saponite 30 

(our sample #SAP105), a fine-grained synthetic lampblack (our sample #LCA101), and a synthetic 

graphite (our sample #GRP102). Sample sources were:  

• SAP105 is sourced from Amargosa Valley, CA-NV, USA. It was provided as a fine-

grained beige powder by IMV Minerals (Lhoist North America) and is marketed under the 

trade name Imvite.   35 

• LCA101: Johnson Matthey, #14237A, <0.021 µm particle size. GRP102: Johnson 

Matthey, #10130A, –300 mesh, 99.5% pure. 

 

Preparation of mixtures: To produce samples with intimately mixed phyllosilicates and opaques, 

we adapted a procedure developed (Error! Reference source not found.) for Bennu analogs. 40 

 

The as-received endmembers were all fine-grained (<45 µm), so no additional sample preparation 

was required. Mixtures were prepared by weighing out endmembers using a balance with an 

accuracy of ±0.1 mg. Approximately 50 grams of each mixture were produced. Each mixture was 

placed into an alumina mortar and pestle and ground together for one minute to remove clumping. 45 

The powders were then mixed with reverse osmosis (RO) water at a volumetric ratio of roughly 
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2:1 water:powder in a stainless steel cup with agitators. The resulting slurries were further blended 

with a commercial-grade drink mixer for roughly 10 minutes and then poured into aluminum trays 

with crenulated bottoms. The mixtures were then heated to 150°C in air and kept at that 

temperature for 4 days using a drying oven. The slurries were initially ~10 cm thick, and the 

heating process resulted in a very large volume loss and formation of mostly few-centimeter 5 

chunks due to desiccation cracking about 1 cm deep. The resulting chunks had a smooth cuspate 

surface with a surface coating of light-colored precipitate (likely halite), and a few vesicles (up to 

~3 mm in diameter). The upper surfaces of the chunks were scraped with a razor blade to remove 

the salt crust. A portion of the sample was retained as-is, with the upper surfaces additionally 

sanded with 60 grit aluminum oxide sandpaper to produce a matte surface. Other portions of the 10 

sample were ground by hand in the alumina mortar and pestle and dry-sieved to produce <1000 

and <45 µm powders, also after removing the salt crusts. This resulted in four different types of 

samples for spectral analysis: flat-matte surfaces, crenulated surfaces, <1000 µm powders, and 

<45 µm powders.  

 15 

Scanning electron and optical microscopy indicated that the lampblack was not fully dispersed in 

the mixtures. The samples showed some areas of clumped lampblack with the larger aggregates 

about 30–50 µm in diameter. Carbon and carbonaceous material mapping of CM chondrites shows 

that carbon-rich domains range in size from <1 µm to a few to tens of microns and are 

heterogeneously distributed (e.g., Error! Reference source not found., Error! Reference source 20 

not found.), so that incomplete disaggregation of the lampblack more closely reproduces 

carbonaceous chondrite matrix textures than complete disaggregation would. 
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Supplementary Figures 

Fig. S1. Principal Component 1. (A) The average spectra for the high and low endmembers of the histogram of PC1. (B) PC1 mapped 

across the surface of Bennu. The red and blue spectra correspond with high and low values in the map of PC1, respectively. The overall 

change in albedos across Bennu is captured by PC1, which tracks with the v band normal reflectance.   5 
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Fig. S2. Principal Component 2. (A and B) Same as in fig. S1, but for PC2. The overall spectral slope (from b′ to x) appears to drive 

the variance of PC2 and tracks the b′/x band ratio. 
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Fig. S3. Principal Component 3. (A and B) Same as in fig. S1, but for PC3. Most spectral variance in PC3 corresponds to an upturn or 

downturn in the b′ band and tracks the b′/v band ratio. 
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Fig. S4. Reflectance of boulders, craters, and Bennu analogs. (A) Average (median) spectra in 

absolute normal reflectance of each color unit identified in Table 1. Error bars represent that 2% 

relative radiometric uncertainty in MapCam data and the light gray dotted lines encompass the 5% 

range of absolute radiometric uncertainty. (B) Same spectra shown in (A) ratioed with the global 5 

median spectrum of Bennu, which removes the relative and absolute uncertainties. (C) MapCam 

photometric spectra (solid circles connected by solid lines) for various color units as compared 

with Bennu’s global spectrum (black dashed line) and laboratory samples (solid lines; labeled 

MUD008) of the phyllosilicate saponite (~90%) mixed with lampblack carbon (10%) and prepared 

in different textures. (D) The serpentine saponite combined, modeled in intimate mixtures with 10 

both magnetite and simulated fine-grained lampblack carbon. The models demonstrate the bluing 

effects of both magnetite and carbon (in this case, lampblack); the bluing effects are expected to 

vary depending on grain size, abundance, and “host” serpentine. Bennu’s global spectrum (black 

dashed line) has a blue spectral slope that falls between both mixtures. 
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Fig. S5. MapCam mosaic (25 cm pixel–1) of the relative band strength at 0.7 μm. Some larger dark boulders appear to have a weak 

(~1%) absorption feature (values <1). Although this weak absorption feature is at the radiometric precision of the MapCam instrument, 

its spatial coherence with individual boulders provides confidence that it is real. However, at the 1% level, minor artifacts, such as stray 

light (which causes linear artifacts at image seams), are also visible. Pyroxene-bearing boulders have band strengths at 0.7 μm >1 and 5 

appear as meter-scale red patches. 
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Fig. S6. The b′/v band ratio (near-UV index) as a function of the relative band depth at 

0.55 μm for the different boulder types identified on Bennu. These quantities are linearly 

correlated for the different boulder types. The upturn in the near-UV observed in the spectra of 

some boulders may be the result of an absorption feature at 0.55 μm. 5 
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Fig. S7. PolyCam image (~5 cm pixel–1) of the primary OSIRIS-REx sample site, Nightingale 

(white circle), acquired on 12 April 2019. This location appears smoother and is less well resolved 

than the bulk of the asteroid’s surface. The texture of Nightingale is representative of many of the 

small reddish craters on Bennu. The image was taken from a distance of 2.8 km. The field of view 5 

is 39.6 m on each side.



 

 

17 

 

 
 

Fig. S8. Example of a crater on a boulder. (A) MapCam RGB false-color composite (same stretch as Fig. 3A) of a boulder with a 

putative crater (white dashed line), (B) as visible in a higher-resolution PolyCam image (5.25 cm pixel–1), and (C) the local OLA DTM. 5 

The recessed crater in this boulder is spectrally redder than its surroundings. 
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Fig. S9. (A) Non-normalized OVIRS spectra for Nightingale crater (solid red line), the blue unit 

crater at 1.06°lat, 152.75°lon (solid blue line), and Bennu's global average (dashed black line), 

corrected to standard reflectance conditions (30°, 0, 30°). The red and blue spectra are vertically 5 

shifted for display by –0.001 and –0.0033, respectively. The wavelength range was chosen to 

emphasize the minima of the 2.7-μm band associated with hydrated phyllosilicates. The gray 

vertical line indicates the minimum band position for the Bennu's global average, at 2.735 μm. For 

Nightingale crater, the band minimum is sharper, and its position is shifted (~15 nm) toward 

shorter wavelengths, compared to the global average. The blue unit crater's average spectrum has 10 

the same hydration band minimum as the global average at 2.735 µm. Still, the shape of the feature 

is sharper than that of the global average. The global average spectrum was obtained from all 

Detailed Survey OVIRS spectra (footprint size, 20 m) from the 12:30 PM local solar time 

Equatorial Station (09 May 2019). (B) Footprints of the four spectra of Nightingale averaged 

together for the red spectrum in (A). Data are from the Recon A phase of the mission (12 Oct. 15 

2019), where the OVIRS footprints span ~6 m. (C) The footprints of the 28 individual spectra from 

12:30 PM local solar time Equatorial Station were used to determine the blue spectrum in (A), 

which is bluer than the global average by a factor of ~3 in the range 0.55–2 µm (when normalized 

at 0.55 µm).  
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Fig. S10. The change in geopotential slope across the surface of Bennu as the spin period 

decreases from 5 hours to the present-day 4.3 hours over the past 200,000 years (Error! 

Reference source not found.). The isolated region near 0°lat, 120–150°lon coincides with the 

presence of the equatorial blue crater units.  5 
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Fig. S11. Azimuthal angles of the intra-boulder color variation plotted against situated 

latitudes of boulders. 
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Fig. S12. Intra-boulder color distribution of boulders. (A) Image of a boulder situated at 20S, 255E 

(20190926T173725S586_map_iofL2v_V005.bvwx). (B) The b′ to x spectral slope within the boulder. The arrow shows the calculated 

direction that maximizes the blue-to-red color variation. The circle indicates the centroid of the boulder. (C) The profile of the b′ to x 5 

slope along the arrow shown in (B). The profile is smoothed by averaging over 20 pixels. (D) The v band normalized spectra of bluer 

and redder faces of the boulder. (E to H) Same as (A) to (D) for a boulder situated at 10S, 260E. Bluer surfaces tends to be brighter. 

The spectral difference between blue and red faces shows that the intra-boulder color variation is characterized by the heterogeneity in 

VIS spectral slope and the possible weakening of the 0.7-μm absorption, whereas the degree of UV upturn is relatively uniform. 
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Fig S13. Comparison of the reflectance and color distribution between Bennu (red) and 

Ryugu (blue). The areal distribution of (A) reflectance and (B) spectral slope observed at ~2 × 2 

m2 and ~64 × 64 m2 resolution. Owing to the slightly different effective wavelengths of the blue 5 

filters of OCAMS and ONC-T, spectral slopes are determined from b to x for Ryugu and b′ to x 

for Bennu. (C) The change in the spectral slope distribution when averaged zonally at different 

latitudes.  
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Fig S14. Comparison of Bennu’s colors with the color of craters on Ryugu. The color of blue 

craters on Ryugu from (70) (yellow squares) compared to craters (green circles) and boulders 

(magenta circles) on Bennu. The x axis is the b′ to x spectral slope, and the y axis is the b′/v band 5 

ratio (near-UV index). Bennu and Ryugu’s average global values (crosses) are shown for context, 

with ellipses that indicate the variation for 68% and 95% coverage.  
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Fig S15. Regional context for the boulder shown in Fig. 3I. A 50 m × 50 m subset of the global 

mosaic of Bennu (Error! Reference source not found.), centered on the boulder shown in Fig. 3I 

(bright clasts in a dark matrix). Although there are small bright boulders in this region, there are 5 

none in the immediate vicinity of this boulder, nor are there any on the neighboring boulders. This 

provides confidence that the bright clasts in the boulder shown in Fig. 3I are embedded in, rather 

than perched upon, the boulder.
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Fig S16. Supporting information for the relationship between spectral slope and crater size and frequency. (A) Crater diameter 

plotted against median b′ to x spectral slope, for craters >20 m. (B) Crater diameter plotted against median b′ to x spectral slope, for 

craters ≤ 20 m. (C) The b′ to x spectral slope distribution of craters on Bennu, for craters >20 m. (D) The b′ to x spectral slope distribution 5 

of craters on Bennu, for craters ≤20 m. When we separate out the largest craters on Bennu (>20 m), the trends between spectral slope 

and crater size and frequency, as highlighted in Fig. 5, still hold.
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Table S1. Summary statistics obtained from the PCA performed on the four MapCam bands, 

including the percentage of the total variance in each PC as well as the eigenvalues, per band, for 

each PC. 

 

 PC1 PC2 PC3 PC4 

b′ eigenvalues 0.514 0.76 –0.378 0.124 

v eigenvalues 0.52 0.077 0.708 –0.471 

w eigenvalues 0.5 –0.373 0.18 0.76 

x eigenvalues –0.463 –0.527 –0.569 –0.429 

% PC variance: 99.3 0.43 0.17 0.089 

  5 
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Table S2. Summary of ANOVA for different crater b′/v band ratios, categorized by their overall 

b′ to x spectral slope (Fig. 6). μ is the global average b′ to x spectral slope of Bennu, and σ indicates 

the standard deviation. 

 

b. ANOVA 

Variation source Sum of 

squares 

Degrees of 

freedom 

Mean 

square 

F p-value Fcrit 

Between Groups 0.0011 4 0.0003 5.0612 0.0005 2.3846 

Within Groups 0.0371 701 5.29×10-5    

       

Total 0.038 705     
 5 

  

a. Summary of statistics  

Category Count Sum Mean Median Variance 

b′/v band ratios for:      

μ > craters b′ to x slope 91 91.2227 1.0024 1.0028 3.57×10-5 

μ + 0.5σ > craters b′-x slope > μ 366 367.3244 1.0036 1.0037 4.65×10-5 

μ + 1σ > craters b′ to x slope > μ + 0.5σ 174 175.0637 1.0061 1.0054 6.21×10-5 

craters b′ to x slope > μ + 1σ 75 75.2571 1.0034 1.0025 8.32×10-5 
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Caption for data S1. Comma separated value (CSV) list of the boulders used in this study. The 

first row are column headings and subsequent rows are boulder data. A description each column 

heading, in single quotes, is given parenthetically here: ‘sequential_id’ (arbitrary unique id), 

‘area_m^2’ (area of the polygon used to trace boulder in units of m2); ‘center_latitude’ (polygon 

central latitude in units of degrees, domain ±90º); ‘center_longitude’ (polygon central longitude in 5 

units of degrees, domain 0–360º); and ‘classification’ (determined by the boulder classification 

scheme described in this study).  

 

Caption for data S2. CSV list of the craters used in this study. The first row are column headings 

and subsequent rows are crater data. A description each column heading, listed in single quotes, is 10 

given parenthetically here: ‘sequential_id’ (arbitrary unique id), ‘radius_km’ (radius of the circle 

used to trace the crater, in units of km); ‘center_latitude’ (circle central latitude in units of degrees, 

domain ±90º); ‘center_longitude’ (circle central longitude in units of degrees, domain 0–360º). 

 

Caption for data S3. Text file list of all the OCAMS MapCam long exposure images used to 15 

produce the maps in Fig. 1. 
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