25,785 research outputs found
Sustainable Growth and Ethics: a Study of Business Ethics in Vietnam Between Business Students and Working Adults
Sustainable growth is not only the ultimate goal of business corporations but also the primary target of local governments as well as regional and global economies. One of the cornerstones of sustainable growth is ethics. An ethical organizational culture provides support to achieve sustainable growth. Ethical leaders and employees have great potential for positive influence on decisions and behaviors that lead to sustainability. Ethical behavior, therefore, is expected of everyone in the modern workplace. As a result, companies devote many resources and training programs to make sure their employees live according to the high ethical standards. This study provides an analysis of Vietnamese business students’ level of ethical maturity based on gender, education, work experience, and ethics training. The results of data from 260 business students compared with 704 working adults in Vietnam demonstrate that students have a significantly higher level of ethical maturity. Furthermore, gender and work experience are significant factors in ethical maturity. While more educated respondents and those who had completed an ethics course did have a higher level of ethical maturity, the results were not statistically significant. Analysis of the results along with suggestions and implications are provided
The effect of NOM characteristics and membrane type on microfiltration performance
Efforts to understand and predict the role of different organic fractions in the fouling of low-pressure membranes are presented. Preliminary experiments with an experimental apparatus that incorporates automatic backwashing and filtration over several days has shown that microfiltration of the hydrophilic fractions leads to rapid flux decline and the formation of a cake or gel layer, while the hydrophobic fractions show a steady flux decline and no obvious formation of a gel or cake layer. The addition of calcium to the weakly hydrophobic acid (WHA) fraction led to the formation of a gel layer from associations between components of the WHA. The dominant foulants were found to be the neutral and charged hydrophilic compounds, with hydrophobic and small pore size membranes being the most readily fouled. The findings suggest that surface analyses such as FTIR will preferentially identify hydrophilic compounds as the main foulants, as these components form a gel layer on the surface while the hydrophobic compounds adsorb within the membrane pores. Furthermore, coagulation pre-treatment is also likely to reduce fouling by reducing pore constriction rather than the formation of a gel layer, as coagulants remove the hydrophobic compounds to a large extent and very little of the hydrophilic neutral components
Application of Probabilistic Neural Networks in Modelling Structural Deterioration of Stormwater Pipes
In Australia, when stormwater systems were first introduced over 100 years ago, they were constructed independently of the sewer systems, and they are normally the responsibility of the third level of government, i.e., local government or city councils. Because of the increasing age of these stormwater systems and their worsening performance, there are serious concerns in a significant number of city councils regarding their deterioration. A study has been conducted on the structural deterioration of concrete pipes that make up the bulk of the stormwater pipe systems in these councils. In an attempt to look for a reliable deterioration model, a probabilistic neural network (PNN) model was developed using the data set supplied from participating councils. The PNN model was validated with snapshot-based sample data, which makes up the data set. The predictive performance of the PNN model was compared with a traditional parametric model using discriminant analysis on the same data set. Structural deterioration was hypothesised to be influenced by a set of explanatory factors, including pipe design and construction factors—such as pipe size, buried depth—and site factors— such as soil type, moisture index, tree root intrusion, etc. The results show that the PNN model has a better predictive power and uses significantly more input variables (i.e., explanatory factors) than the discriminant model. More importantly, the key factors for prediction in the PNN model are difficult to interpret, suggesting that besides prediction accuracy, model interpretation is an important issue for further investigation
HIV with contact-tracing: a case study in Approximate Bayesian Computation
Missing data is a recurrent issue in epidemiology where the infection process
may be partially observed. Approximate Bayesian Computation, an alternative to
data imputation methods such as Markov Chain Monte Carlo integration, is
proposed for making inference in epidemiological models. It is a
likelihood-free method that relies exclusively on numerical simulations. ABC
consists in computing a distance between simulated and observed summary
statistics and weighting the simulations according to this distance. We propose
an original extension of ABC to path-valued summary statistics, corresponding
to the cumulated number of detections as a function of time. For a standard
compartmental model with Suceptible, Infectious and Recovered individuals
(SIR), we show that the posterior distributions obtained with ABC and MCMC are
similar. In a refined SIR model well-suited to the HIV contact-tracing data in
Cuba, we perform a comparison between ABC with full and binned detection times.
For the Cuban data, we evaluate the efficiency of the detection system and
predict the evolution of the HIV-AIDS disease. In particular, the percentage of
undetected infectious individuals is found to be of the order of 40%
Markov and Neural Network Models for Prediction of Structural Deterioration of Stormwater Pipe Assets
Storm-water pipe networks in Australia are designed to convey water from rainfall and surface runoff. They do not transport sewerage. Their structural deterioration is progressive with aging and will eventually cause pipe collapse with consequences of service interruption. Predicting structural condition of pipes provides vital information for asset management to prevent unexpected failures and to extend service life. This study focused on predicting the structural condition of storm-water pipes with two objectives. The first objective is the prediction of structural condition changes of the whole network of storm-water pipes by a Markov model at different times during their service life. This information can be used for planning annual budget and estimating the useful life of pipe assets. The second objective is the prediction of structural condition of any particular pipe by a neural network model. This knowledge is valuable in identifying pipes that are in poor condition for repair actions. A case study with closed circuit television inspection snapshot data was used to demonstrate the applicability of these two models
ZFOURGE: Extreme 5007 emission may be a common early-lifetime phase for star-forming galaxies at
Using the \prospector\ spectral energy distribution (SED) fitting code, we
analyze the properties of 19 Extreme Emission Line Galaxies (EELGs) identified
in the bluest composite SED in the \zfourge\ survey at .
\prospector\ includes a physical model for nebular emission and returns
probability distributions for stellar mass, stellar metallicity, dust
attenuation, and nonparametric star formation history (SFH). The EELGs show
evidence for a starburst in the most recent 50 Myr, with the median EELG having
a specific star formation rate (sSFR) of 4.6 Gyr and forming 15\% of its
mass in this short time. For a sample of more typical star-forming galaxies
(SFGs) at the same redshifts, the median SFG has a sSFR of 1.1 Gyr and
forms only of its mass in the last 50 Myr. We find that virtually all of
our EELGs have rising SFHs, while most of our SFGs do not. From our analysis,
we hypothesize that many, if not most, star-forming galaxies at
undergo an extreme H+[\hbox{{\rm O}\kern 0.1em{\sc iii}}] emission
line phase early in their lifetimes. In a companion paper, we obtain
spectroscopic confirmation of the EELGs as part of our {\sc MOSEL} survey. In
the future, explorations of uncertainties in modeling the UV slope for galaxies
at are needed to better constrain their properties, e.g. stellar
metallicities.Comment: 11 pages, 5 figures (main figure is fig 5), accepted for publication
in Ap
``Superfast'' Reaction in Turbulent Flow with Potential Disorder
We explore the regime of ``superfast'' reactivity that has been predicted to
occur in turbulent flow in the presence of potential disorder. Computer
simulation studies confirm qualitative features of the previous renormalization
group predictions, which were based on a static model of turbulence. New
renormalization group calculations for a more realistic, dynamic model of
turbulence show that the superfast regime persists. This regime, with
concentration decay exponents greater than that for a well-mixed reaction,
appears to be a general result of the interplay among non-linear reaction
kinetics, turbulent transport, and local trapping by potential disorder.Comment: 14 pages. 4 figures. Uses IOP styles. To appear in J. Phys. A: Math.
Ge
Pterodactyl: Thermal Protection System for Integrated Control Design of a Mechanically Deployed Entry Vehicle
The need for precision landing of high mass payloads on Mars and the return of sensitive samples from other planetary bodies to specific locations on Earth is driving the development of an innovative NASA technology referred to as the Deployable Entry Vehicle (DEV). A DEV has the potential to deliver an equivalent science payload with a stowed diameter 3 to 4 times smaller than a traditional rigid capsule configuration. However, the DEV design does not easily lend itself to traditional methods of directional control. The NASA Space Technology Mission Directorate (STMD)s Pterodactyl project is currently investigating the effectiveness of three different Guidance and Control (G&C) systems actuated flaps, Center of Gravity (CG) or mass movement, and Reaction Control System (RCS) for use with a DEV using the Adaptable, Deployable, Entry, and Placement Technology (ADEPT) design. This paper details the Thermal Protection System (TPS) design and associated mass estimation efforts for each of the G&C systems. TPS is needed for the nose cap of the DEV and the flaps of the actuated flap control system. The development of a TPS selection, sizing, and mass estimation method designed to deal with the varying requirements for the G&C options throughout the trajectory is presented. The paper discusses the methods used to i) obtain heating environments throughout the trajectory with respect to the chosen control system and resulting geometry; ii) determine a suitable TPS material; iii) produce TPS thickness estimations; and, iv) determine the final TPS mass estimation based on TPS thickness, vehicle control system, vehicle structure, and vehicle payload
Gender dimorphism and age of onset in malignant peripheral nerve sheath tumor preclinical models and human patients.
BackgroundGender-based differences in disease onset in murine models of malignant peripheral nerve sheath tumor (MPNST) and in patients with Neurofibromatosis type-1-(NF-1)-associated or spontaneous MPNST has not been well studied.MethodsForty-three mGFAP-Cre+;Ptenloxp/+;LSL-K-rasG12D/+ mice were observed for tumor development and evaluated for gender disparity in age of MPNST onset. Patient data from the prospectively collected UCLA sarcoma database (1974-2011, n = 113 MPNST patients) and 39 published studies on MPNST patients (n = 916) were analyzed for age of onset differences between sexes and between NF-1 and spontaneous MPNST patients.ResultsOur murine model showed gender-based differences in MPNST onset, with males developing MPNST significantly earlier than females (142 vs. 162 days, p = 0.015). In the UCLA patient population, males also developed MPNST earlier than females (median age 35 vs. 39.5 years, p = 0.048). Patients with NF-1-associated MPNST had significantly earlier age of onset compared to spontaneous MPNST (median age 33 vs. 39 years, p = 0.007). However, expanded analysis of 916 published MPNST cases revealed no significant age difference in MPNST onset between males and females. Similar to the UCLA dataset, patients with NF-1 developed MPNST at a significantly younger age than spontaneous MPNST patients (p < 0.0001, median age 28 vs. 41 years) and this disparity was maintained across North American, European, and Asian populations.ConclusionsAlthough our preclinical model and single-institution patient cohort show gender dimorphism in MPNST onset, no significant gender disparity was detected in the larger MPNST patient meta-dataset. NF-1 patients develop MPNST 13 years earlier than patients with spontaneous MPNST, with little geographical variance
- …
