ed by Victori 1	The effect of NOM characteristics and membrane type on
2	microfiltration performance
3	
1	S. R. Grav ¹ * C. B. Ritchie ² T. Tran ³ and B. A. Bolto ³
-	Justice Construction II and J. A. Dono
2	Institute of Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, Vic 8001,
6	Australia.
7	² P3M, Moore Rd, Nar Nar Goon North, Victoria, 3812, Australia
8	³ CSIRO Manufacturing & Materials Technology, Private Bag 33, Clayton South, Vic 3169, Australia.
9	
10	Abstract
11	Efforts to understand and predict the role of different organic fractions in the fouling of low-pressure
12	membranes are presented. Preliminary experiments with an experimental apparatus that
13	incorporates automatic backwashing and filtration over several days has shown that microfiltration
14	of the hydrophilic fractions leads to rapid flux decline and the formation of a cake or gel layer, while
15	the hydrophobic fractions show a steady flux decline and no obvious formation of a gel or cake
16	layer. The addition of calcium to the weakly hydrophobic acid (WHA) fraction led to the formation
17	of a gel layer from associations between components of the WHA. The dominant foulants were
18	found to be the neutral and charged hydrophilic compounds, with hydrophobic and small pore size
19	membranes being the most readily fouled. The findings suggest that surface analyses such as FTIR
20	will preferentially identify hydrophilic compounds as the main foulants, as these components form a
21	gel layer on the surface while the hydrophobic compounds adsorb within the membrane pores.
22	Furthermore, coagulation pre-treatment is also likely to reduce fouling by reducing pore constriction
23	rather than the formation of a gel layer, as coagulants remove the hydrophobic compounds to a large
24	extent and very little of the hydrophilic neutral components.

*Corresponding author. Tel.: +61 3 9919 8097. E-mail address: Stephen.Gray@vu.edu.au (S. R. Gray).

26 Keywords: Microfiltration; Membranes; Natural organic matter; Fouling

27

28 **1. Introduction**

29 Many factors affect membrane fouling by natural organic matter (NOM), including the nature of the 30 NOM (size, hydrophobicity, charge), the membrane (hydrophobicity, charge, surface roughness), 31 the solution (pH, ionic strength, hardness ion concentration) and the hydrodynamics of the 32 membrane system (solution flux, surface shear) (Taniguchi et al. 2003). In a study of hollow fibre 33 microfiltration (MF) membranes treating two surface water sources (Gray *et al.* 2007), we have 34 explored varying solution conditions such as NOM concentration, the ionic strength and the pH 35 level, as well as the improvement gained by prior alum treatment, a topic that has been reviewed 36 recently (Farahbakhsh et al. 2004). The current paper is devoted to the influence of various NOM 37 fractions on membrane performance, so that a better understanding of the mechanism of NOM 38 fouling might be obtained.

39

40 The use of NOM fractions from Moorabool River, near Anakie in south eastern Australia to test 41 which types of compounds are responsible for MF membrane fouling revealed that for a 42 polypropylene (PP) hollow fibre system, the neutral hydrophilic fraction was the most strongly 43 implicated (Carroll et al. 2000). There was a 40% decrease in flux after a throughput that caused only a 20% decrease for the other fractions - the strongly and weakly hydrophobic acids and 44 45 charged hydrophilic material. The three less-fouling fractions had their DOC reduced by 48, 49 and 46 64% respectively following alum treatment, while there was no DOC removal for the neutral 47 hydrophilic fraction. Prior treatment with alum significantly reduced the rate of fouling by the raw 48 water (by a 50% decrease versus 82% for the untreated raw water). Alum treatment had only a 49 small influence on the fouling rate despite substantial removal of the charged fractions, the fouling 50 by the neutral hydrophilic fraction being just slightly less than for alum-treated raw water (Carroll et *al*, 2000). It is likely that the alum treated water still contained the neutral fraction, as Tran *et al*(2006) has shown coagulation to remove the neutral hydrophilic fraction only slightly, while the
other fractions were removed to a far greater extent.

54

55 Other experiments on hydrophobic and hydrophilic MF membranes gave fouling potentials by NOM 56 from surface waters as neutral hydrophilic fraction > strongly hydrophobic acids > weakly 57 hydrophobic acids > charged hydrophilic fraction (Fan *et al.* 2001). The fouling rate for the 58 hydrophobic membrane was considerably greater than for the hydrophilic membrane. In the 59 fractionation process it was found that calcium became concentrated in the neutral fraction, suggesting that organic/Ca⁺⁺ complexes were formed that could become bound to the negatively 60 61 charged membranes. Pre-filtration of the neutral hydrophilic fraction with a 30 kDa UF membrane 62 significantly reduced fouling rate. Most of the neutral compounds in the neutral hydrophilic fraction 63 were of low MW, showing that it was only the small amount of high MW matter that were the 64 strongest fouling components.

65

A small component of the total NOM was also found to be responsible for the major fouling of MF
membranes in another study (Howe and Clarke 2002). NOM in natural water samples was
fractionated with UF membranes to obtain various MW fractions. The major fouling effect occurred
with compounds larger than 3 nm, which corresponded to only 10-15% of the total NOM.
Furthermore, marked differences in the extent of fouling between membranes of similar pore size
but different composition were observed, leading to the conclusion that adsorption of NOM was the
mechanism that led to MF fouling.

73

Aquatic NOM fractions have been passed through a hydrophobic polypropylene MF membrane and
the flux decline monitored (Gray *et al.* 2004). The fraction containing all the hydrophobic acids
fouled the membrane more than the individual strongly hydrophobic acid and weakly hydrophobic

77	acid fractions, suggesting that association between the latter two entities may be occurring to cause
78	the more severe fouling effect. Such interactions have been proposed for similarly charged
79	polyelectrolyte/fatty acid monolayer systems (Gole et al. 2003) and for hydrophobically-modified
80	anionic polyelectrolytes and anionic surfactants (Deo et al. 2003). Much more work has been
81	carried out on ultrafiltration (UF) and nanofiltration (NF) systems, some of which is summarised in
82	Table 1.
83	
84	In a study encompassing several membrane types, the present paper is aimed at understanding the
85	fouling mechanism of each NOM fraction on membranes of varying composition, and when
86	additional salt is added.
87	
88	2. Experimental
89	
90	2.1 Water Source
91	Reverse osmosis with a 5 μ m pre-filter was used to concentrate NOM in water
92	from Lake Eppalock, Bendigo, that had TOC 7.9 mg/L, UV ₂₅₄ 0.182 cm ⁻¹ and SUVA ₂₅₄ 2.30
93	L/mg.m. Likewise a concentrate NOM was obtained from the Moorabool River at Anakie. The raw

94 water had TOC 9.1 mg/L, UV_{254} 0.154 cm⁻¹ and SUVA₂₅₄ 1.69 L/mg.m. The use of RO to

95 concentrate NOM from fresh waters has been recommended because of the very high percentage of

96 NOM recovered and the rapidity of the process (Serkiz and Perdue, 1990). NOM recovery has been

97 estimated in terms of colour removal as 80-100%, and in terms of permanganate oxidation, 50-99%

98 (Ødegaard and Koottatep, 1982). Other workers quote NOM recovery by RO up to 99.7% (Schäfer,

99 2001). One study has shown that RO isolates have a higher MW than the original raw filtered

100 water, leading to the postulation that some condensation reactions may occur during the isolation

101 process (Maurice et al., 2002). However, a detailed study found that properties such as size,

polarity, charge density and isoelectric point were preserved with RO isolation, which gave an
organics rejection of >99% (Kilduff *et al.*, 2004).

104

Two methods, variations of the published procedure (Carroll *et al.* 2000), were used to isolate
different components from the NOM. Procedure A is identical to the fraction procedure used before
except that it further divides the hydrophilic neutral fraction into two sub-fractions: hydrophobic
bases (HB) and residual hydrophilics (Res).

109

110 A portion of the neutral hydrophilic fraction was retained from procedure A so that it could be 111 compared to its sub-fractions. The other four fractions were: a strongly hydrophobic acids (SHA) 112 fraction separated on Supelite DAX-8 at pH 2; a weakly hydrophobic acids (WHA) fraction 113 separated on Amberlite XAD-4 at pH 2; a hydrophilic charged fraction (Char) of anionic material 114 separated on Amberlite IRA-958 at pH 8; and a hydrophilic neutral fraction (Neut) which does not 115 adsorb on any of the above. The hydrophobic bases were removed from the neutral hydrophilic 116 fraction by adsorption on Supelite DAX-8 at pH 8, while the residual hydrophilics were not 117 adsorbed on the Supelite DAX resin. Fractionation procedure B did not use the DAX 8 resin to 118 isolate NOM, and all hydrophobic compounds were removed on the XAD 4 resin as hydrophobic 119 acids (HA) (Gray et al. 2004).

120

The NOM fractions were removed from the DAX-8 and XAD-4 resins by elution with NaOH for the
hydrophobic acids (SHA, WHA and HA) and by elution with HCl for the hydrophobic bases. The
Char components were eluted from the Amberlite IRA-958 by acidic NaCl solution. Once eluted,
NOM was de-salted by use of ultra-filtration.

125

126 The make up of the NOM is shown in Table 2. Meredith water was much higher in the SHA

127 fraction at the expense of the WHA material; otherwise the compositions were rather similar.

Evidence from solid state ¹³C nuclear magnetic resonance spectra (Wong *et al.*, 2002) has previously 129 130 shown the hydrophobic fractions to be high in aliphatic and aromatic carbon, while the weakly 131 hydrophobic organics have more carbonyl and alkoxy carbon. Hydrophilic fractions show strong 132 alkoxy signals attributable to carbohydrates, while for one water phenolic carbon was present. 133 Generally, the SHA is considered to contain predominantly humic acids, WHA predominantly fulvic 134 acids. Char predominantly fatty acids and carbohydrates and the neutral hydrophilics predominantly 135 carbohydrates and polysaccharides. However, all fractions undoubtedly contain a mixture of the many 136 compound types present in the original water (Owen et al., 1993). 137 138 The relative concentrations of colloidal NOM were characterized by liquid chromatography using an 139 organic carbon detector (LC-DOC) at Curtin University. The Meredith water was shown to have 140 approximately twice as much colloidal NOM as the Bendigo water, although the absolute concentrations 141 could not be determined. It was assumed that this component of NOM reports predominantly to the 142 hydrophilic fraction of NOM as it is composed of polysaccharide based material (Croué, 2004). This is 143 consistent with the previous NMR analysis of NOM (Wong et al., 2002). 144 145 2.2 Membranes 146 A single hollow fibre membrane filtration rig was used to examine the fouling characteristics of 147 each NOM fraction, using the previously described procedure (Gray et al. 2004). The filtration 148 apparatus allowed the filtration to be performed at a constant pressure of 0.5 bar and the membranes 149 to be backwashed every 30 minutes using a liquid backwash (0.8 bar). The filtration results are 150 presented as a relative flux (membrane flux at 20°C/flux with Milli Q water at 20°C) versus 151 filtration throughput when presented in graphical form, or in tabular form as a relative flux after a 152 given mass of filtrate had passed. The extent of flux recovery upon backwashing could be estimated

153 from the change in relative flux following backwashing (or the width of the line in the relative flux154 versus filtrate graph).

156	The membranes used were three Memcor products, a hydrophobic polypropylene (PP) membrane
157	with a nominal pore size of 0.2 μ m and contact angle of 160°, and hydrophobic (PVDF-1; contact
158	angle 115°) and hydrophilic (PVDF-2; contact angle of 61°) polyvinylidene fluoride membranes,
159	which had nominal pore sizes of 0.1 μ m respectively. A poly(ether sulphone) membrane from
160	Thames (PES-2) having a nominal pore size of 0.01 μ m and a contact angle of 59° was tested also.
161	All filtration experiments were conducted at pH 6, and the DOC concentrations were held constant
162	for each water (ie. Bendigo or Meredith).
163	
164	Following the filtration experiments, the microstructures of the PP membrane surfaces were
165	characterised using a Philips XL30 field emission scanning electron microscope (SEM) in both the
166	secondary and back-scattered electrons (BSE) modes operating at 5-15kV. Associated energy-
167	dispersive X-ray spectroscopy (EDS) was also used to obtain chemical information.
168	
169	3. Results and Discussion
170	
171	3.1 NOM Fractions
172	Experiments on MF of the NOM fractions were carried out using the four membranes described
173	above. The effects on flux and throughput were explored. Results for the PP membrane are given
174	in Fig. 1 and 2. It can be seen that the greatest flux decline occurs with the Neut fraction for both
175	Bendigo and Meredith NOM, the next most potent foulants being the Char fraction, followed by the
176	least fouling SHA and WHA fractions. Figures 3 and 4 show SEM photographs of the fresh PP
177	membrane surface and the PP surface following filtration with raw water. Comparison of these two
178	figures shows that filtration of the raw water leads to the formation of a gel layer on the surface. 7

The fouling caused by the hydrophobic fractions (SHA and WHA) may be attributed to the adsorption of the hydrophobic acids on the hydrophobic PP membrane. The flux recovery on backwashing is small compared to the Char and Neut fractions (width of lines in Figures 1 and 2) and the SEM photographs following filtration with the WHA fraction has little surface fouling evident (Figure 5). These results are consistent with fouling via pore constriction.

185

In comparison, the flux decline curves for the Char and Neut fractions may be attributed to the formation of a cake or gel layer on the membrane surface. There is greater flux recovery upon backwashing for these fractions and the SEM photograph following filtration by the Char fraction (Figure 6) shows the presence of a gel layer.

190

191 Table 3 shows the Bendigo flux results for all membranes after 3 L throughput of the raw water and 192 its various NOM fractions. It is apparent generally that the Neut and HB fractions have the greatest 193 effect on flux, and WHA the least. There was only enough HB material to test on the one membrane 194 and the results were identical to those for the Neut fraction. The formation of the gel layer on the 195 surface of the membrane by the Neut and Char fractions appears to lead to faster flux decline for 196 these waters than pore constriction from the SHA and WHA fractions. The formation of the gel 197 layer on the membrane surface might be regarded as being the result of filtering large particles or 198 organic complexes that are too large to be filtered. While this may be possible, and the presence of 199 large entities in the cake layer will lead to a faster formation of this layer, previous work has also 200 shown that the flux decline of MF and UF membranes does not alter when the permeate is re-filtered 201 through another clean membrane (Makdissy et al. 2004). If the cake layer were the result of entities 202 that were too large to pass through the membrane, then these entities should be removed and 203 refiltering the permeate should lead to a lower flux decline. However, the fact that similar flux 204 declines have been observed when the permeate has been re-filtered suggests that the cake layer may

be formed on the surface by associations between organic compounds. Given the gel layer appeared
for the Char and Neut fractions of NOM it is evident that the gel layer is the result of filtering
polysaccharide material rather than humic substances.

208

209 Combining the SHA and WHA fractions (1:1; no salt addition) before passing them through the PES-210 2 membrane resulted in a greater flux decline than either of the two separate fractions, with nearly a 211 halving of the flux at low throughputs. Pore blocking by what seem to be larger species may be 212 occurring. There was little difference in behaviour with the two PVDF membranes. If there is 213 association or clustering of the two hydrophobic fractions, it might be expected to have more 214 influence on the less polar membranes, which is observed to a small extent for the PP membrane, but 215 not for PVDF-1. These results re-enforce the proposition that the hydrophobic compounds do not by 216 themselves lead to the formation of a cake or gel layer except perhaps for the smaller pore size UF 217 membranes.

218

The effect of the various Meredith NOM fractions on membrane behaviour is shown in Table 4. With the PP membrane the Char fraction has the greatest effect on flux, and the hydrophobic fractions the least, whereas for the PVDF-2 membrane the Char fraction fouls insignificantly. This is due to the greater flux recovery upon backwashing for the PVDF membrane compared to the PP membrane (see Figure 7 for a typical comparison of flux recoveries between PP and PVDF membranes) when the Char fraction is filtered, and re-enforces the notion that the adhesion between the membrane and the gel layer is critical in determining the rate of flux decline.

The most severe flux decline for the PP membrane was with the Char and Neut fractions. For the
PVDF-2 membrane the Neut fraction was again the worst offender, similar to the raw water. The
Char, SHA and WHA fractions are much less fouling, and HA the least.

230

231 The addition of salt to raw Meredith water and its NOM fractions had pronounced effects in some 232 cases, as also shown in Table 4. For the hydrophobic PP membrane there was a dramatic reduction 233 in flux for the WHA compounds, a similar effect but in the reverse direction for the Char fraction, a 234 slight reduction in flux for the HA fraction and a negligible change for the raw water. SHA and Neut 235 fractions. However for the Type B Neut fraction salt enhanced the flux markedly. Interactions that 236 could account for the PP membrane results may involve calcium ion binding the WHA to the 237 membrane. The presence of calcium, here at only 0.05 mM concentration, has been observed at 1 238 mM concentration to decrease the size of soil-derived NOM from 300 nm to ~100 nm, but at higher 239 calcium levels a size increase was observed that was ascribed to chelation between the species. 240 although a concentration of >2 mM was required (Xi et al. 2004). In the present work a flux 241 reduction at low calcium levels may result from calcium linking the WHA molecules to the 242 membrane, which is not happening to the same extent with the SHA fraction, a fact that could be 243 ascribed to the much greater content of carboxylic acid groups in the WHA molecules, estimated to 244 be some 2.5 times for a French river NOM (Garnier *et al.*2004). This proposed mechanism is also 245 consistent with the formation of a gel layer with the WHA when the additional salt (NaCl and 246 CaCl₂) are added, as is shown in Figure 8. An analogous explanation has been proposed for an 247 NOM surrogate in the form of a carboxylated latex particle, where it been shown that calcium ions 248 greatly enhanced fouling of a thin film composite membrane made from a semi-aromatic piperazine 249 based polyamide (Li and Elimelech 2004). The calcium ions complex to carboxylic acid groups on 250 the solution NOM and the NOM deposited on the membrane, to form bridges between the two 251 surfaces.

252

The Char fraction is probably made up of polysaccharide and protein fragments that will contain negative and in the latter case positive sites that can interact electrostatically, providing bonds between molecules. Adding salt will shield the charges and result in disaggregation, giving smaller molecules and a greater flux. Increased ionic strength results in a strong improvement in flux with

257 the Type B Neut fraction. This fraction also contains hydrophobic basic compounds, and adsorption 258 of these compounds on the membrane, possibly initially by hydrophobic bonding of the basic moiety 259 to hydrophobic patches on the membrane surface, will be more pronounced at the higher ionic 260 strengths. The resulting increased hydrophilicity of the membrane as a result of adsorbing these 261 compounds may be responsible for the higher flux. The effect should be more pronounced for the 262 more hydrophobic PP membrane than for PVDF-2, and indeed the former membrane shows the 263 greater flux increase, nearly threefold that for the PP membrane. This sort of surface modification 264 has been achieved by coating membranes with surfactants (Maartens et al. 2000). Non-ionic 265 surfactants of the polyethylene oxide type increased the relative fluxes in UF of a natural brown 266 water. Recovery from a flux decline in UF is also documented for distilled water-detergent systems 267 (Bhattacharyya et al. 1979), and flux improvements have been obtained for UF of bovine serum 268 albumin through detergent-pretreated regenerated cellulose, polyacrylic and polyamide membranes 269 (Fane et al. 1985).

270

For the hydrophilic and probably more negatively charged PVDF-2 membrane there appears to be minor changes in the opposite direction to that found for the PP membrane and the WHA fraction, suggesting that a disaggregation mechanism may dominate. But for the Char fraction there is a pronounced effect in the opposite direction, with salt encouraging flux decline. It could be that the greater negative charge on the membrane is enhancing calcium ion binding of the anionic species to the membrane. As with the PP membrane, the Type B Neut fraction enhances flow because of the increased hydrophilicity of the membrane, as organics adsorption is again strong.

278

The different fouling mechanisms between the hydrophobic and hydrophilic compounds may explain why polysaccharides, proteins and carbohydrates are usually found to be the cause of fouling when FTIR is used to identify the composition of surface coatings. The results from this work indicate that hydrophobic compounds foul by blocking the internal pores of the membrane

while the hydrophilic compounds form surface layers. As FTIR only analyses the surface coatings, only the hydrophilic compounds will be detected, as the hydrophobic compounds are likely to be adsorbed within the membrane pores. Given the poor rejection of NOM by MF, the gel layers that form on the membrane surface are unlikely to reject hydrophobic compounds, so they would be available for adsorption and fouling within the membrane pores even when once the gel layer has formed.

289

290 Furthermore, coagulation is known to preferentially remove the hydrophobic and charged

291 compounds and to remove very little of the hydrophilic neutral compounds (Tran et al, 2006).

292 Therefore, coagulation prior to MF acts to reduce pore blocking from the hydrophobic compounds,

but will have little effect on the formation of a gel layer resulting from the filtration of the

294 hydrophilic neutral components.

295

296 4. Conclusions 297

Hydrophobic membranes fouled more readily then hydrophilic membranes, as did those of small pore size. The most potent foulants were the neutral and charged hydrophilic compounds, as they formed a gel layer on the membrane surface. The SHA compounds were next, then the WHA compounds, neither of which formed cake or gel layers on the surface. Interactions between hydrophobic components may be occurring in some instances, where the level of strongly hydrophobic compounds is high, while the addition of calcium to the WHA fraction led to the formation of a gel layer through associations between the WHA components.

305

The different fouling mechanisms between hydrophobic and hydrophilic compounds suggests that FTIR analysis will always identify the hydrophilic compounds as the main fouling compounds. FTIR analyses the composition of the surface layers, and therefore will determine the composition

309	of the gel layer.	This was show	vn to be formed	by the	hydrophilic	compounds,	while	the
310	hydrophobic compo	unds fouled the	nembrane by adso	rption wi	ithin the pore	es.		

The results also suggest that pre-treatment with coagulation will not prevent the formation of a gel layer but will reduce the level of pore constriction by hydrophobic compounds, as coagulation is known to preferentially remove the hydrophobic and charged compounds.

315

316 Acknowledgements

The authors would like to thank the Cooperative Research Centre for Water Quality and Treatmentfor financial assistance.

319

320 **References**

- Amy, G., Cho, J. (1999) Interactions between natural organic matter (NOM) and membranes:
 Rejection and fouling. *Water Sci. Technol.* 40[9], 131-139.
- 323 Amy, G., Cho, J., Yoon, Y., Wright, S., Clark, M. M., Molis, E., Combe, C., Wang, Y., Lucas, P.,
- Lee, Y., Kumar, M., Howe, K., Kim, K.-S., Pelligrino, J., Irvine, S. (2001) NOM rejection by,
- 325 and fouling of, NF and UF membranes. AwwaRF Report, AWWA Research Foundation,

326 Denver.

327 Bhattacharyya, D., Jumawan, A. B., Grieves, R. B. (1979) Ultrafiltration characteristics of oil-

detergent-water systems: Membrane fouling mechanisms. *Sep. Sci & Technol.* **14**[6], 529-549.

- 329 Carroll, T., King, S., Gray, S., Bolto, B., Booker, N. (2000) The fouling of microfiltration
- 330 membranes by NOM after coagulation treatment. *Water Research* **34**, 2861-2868.
- 331 Chang, Y., Benjamin, M. M. (1996) Iron oxide adsorption and UF to remove NOM and control
- 332 fouling. J. Amer. Water Works Assocn. 88[12], 74-88.
- 333 Croué, J.-P. (2004). Isolation of humic and non-humic NOM fractions: Structural characterisation.
- *Environ. Monitoring & Assessment* **92**, 193-207.

- 335 Deo, P., Jockusch, S., Ottaviani, M. F., Moscatelli, A., Turro, N. J., Somasundaran, P. (2003)
- Interactions of hydrophobically modified polyelectrolytes with surfactants of the same charge. *Langmuir* 19, 10747-10752.
- Fan, L., Harris, J. L., Roddick, F. A., Booker, N A. (2001) Influence of the characteristics of
 natural organic matter on the fouling of microfiltration membranes. *Water Research* 35, 44554463.
- Fane, A. G., Fell, C. J. D., Kim, K. J. (1985) The effect of surfactant pre-treatment on the
 ultrafiltration of proteins. *Desalination* 53, 37-55.
- 343 Farahbakhsh, K., Svrcek, C., Guest, R. K., Smith, D. W. (2004) A review of the impact of
- 344 chemical pre-treatment on low-pressure water treatment membranes. J. Environ. Eng. Sci. 3,
 345 237-253.
- Garnier, C., Mounier, S., Benaïm, J. Y. (2004) Influence of dissolved organic carbon content on
 modelling natural organic matter acid-base properties. *Water Research.* 38, 3685-3692.
- Gole, A., Phadtare, S., Sastry, M., Langevin, D. (2003) Studies on interaction between similarly
 charged polyelectrolyte:fatty acid system. *Langmuir* 19, 9321-9327.
- Gray, S. R., Ritchie, C. B., Bolto, B. A. (2004) Effect of fractionated NOM on low pressure
 membrane flux declines. *Wat. Sci. Technol.* 4, 189-196.
- 352 Gu, B., Schmitt, J., Chen, Z., Liang, L., McCarthy, J. F. (1995) Adsorption and desorption of
- different organic matter fractions on iron oxide, *Geochim. Cosmochim. Acta* **59**, 219-229.
- Howe, K. J., Clarke, M. M. (2002) Fouling of microfiltration and ultrafiltration membranes by
- atural waters. *Environ. Sci. Technol.* **36**, 3571-3576.
- Jones, K. L., O'Melia, C. R. (2001) Ultrafiltration of protein and humic substances: effect of
 solution chemistry on fouling and flux decline. *J. Membrane Sci.* 193, 163-173.
- 358 Jucker, C., Clark, M.M. (1994) Adsorption of humic substances on hydrophobic ultrafiltration
- 359 membranes. J. Membrane Sci. 97, 37-52.

- 360 Kilduff, J. E., Mattaraj, S., Wigton, A., Kitis, M. and Karanfil, T. (2004) Effects of reverse osmosis
- 361 isolation on reactivity of naturally opccurring dissolved organic matter in physicochemival
- 362 processes. *Water Research*, **38**, 1026-1036.
- Kimura, K., Hane, Y., Watanabe, Y., Amy, G., Ohkuma, N. (2004) Irreversible membrane fouling
 during ultrafiltration of surface water. *Water Research*, 38, 3431-3441.
- 365 Laîné, J.-M., Hagstrom, J. P., Clark, M.M., Mallevialle, J. (1989) Effects of ultrafiltration
- 366 membrane composition. J. Amer. Water Works Assocn. **81**[11], 61-67.
- Li, Q., Elimelech, M. (2004) Organic fouling and chemical cleaning of nanofiltration membranes:
 Measurements and mechanisms. *Environ. Sci. Technol.* 38, 4683-4693.
- 369 Lin, C.-F., Liu, S.-H., Hao, O. J. (2001) Effect of functional groups of humic substances on UF
- 370 performance. *Water Research*, **35**, 2395-2402.
- Maartens, A., Swart, P., Jacobs, E. P. (2000) Membrane pre-treatment: A method for reducing
 fouling by natural organic matter. *J. Colloid & Interface Sci.* 221, 137-142.
- 373 Makdissy, G., Croué, J.P., Amy, G. and Buisson, H. (2004). Fouling of a polyethersulfone
- 374 ultrafiltration membrane by natural organic matter. IWA Natural organic matter research:
- 375 Innovations and applications for drinking water, Whalers Inn, victor Harbour, SA, March 2-5,
- 376 (http://www.waterquality.crc.org.au/nom/NOM_conference/NOM_conference_website.htm)
- 377 Maurice, P. A., Pullin, M. J., Cabaniss, S. E., Zhou, Q., Namejesnik-Dejanovic, K., Aiken, G. R.
- 378 (2002) A comparison of surface water natural organic matter in raw filtered water samples,
- 379 XAD and revere osmosis isolates. *Water Research* **36**, 2357-2371.
- 380 Nilson, J. A., DiGiano, F. A. (1996) Influence of NOM composition on nanofiltration, J. Amer.
- 381 *Water Works Assocn.* **88**[5], 53-66.
- 382 Ødegaard, H., Koottatep, S. (1982) Removal of humic substances from natural waters by reverse
- 383 osmosis. *Water Research* **16**, 613-620.
- 384 Owen, D. M., Amy, G. L., Chowdhury, Z. K. (1993) Characterisation of Natural Organic Matter and its
- 385 *Relationship to Treatability*, American Water Works Association Research Foundation, Denver, p. 6.

- 386 Schäfer, A. I. (2001) Natural Organic Matter Removal Using Membranes: Principles, Performance
- 387 *and Cost.* Technomic Publishing, Lancaster, Pennsylvania, p. 313.
- 388 Schäfer, A. I., Fane, A.G., Waite, T. D. (1998) Nanofiltration of natural organic matter:
- Removal, fouling and the influence of multivalent ions. *Desalination* **118**, 109-122.
- 390 Serkiz, S. M., Perdue, E. M. (1990) Isolation of dissolved organic matter from the Suwannee River
- 391 using reverse osmosis. *Water Research* **24**, 911-916.
- Taniguchi, M., Kilduff, J. E., Belfort, G. (2003) Modes of natural organic matter fouling during
 ultrafiltration. *Environ. Sci. Technol.* 37, 1676-1683.
- 394 Tran, T., Gray, S.R., Naughton, R. and Bolto, B.A. (2006) Polysilicato-iron for improved NOM
- removal and membrane performance. J. Mem. Sci. 280, 560-571
- Wong, S., Hanna, J. V., King, S. J., Carroll, T., Eldridge, R. J., Dixon, D. R., Bolto, B. A., Hesse, S.,
- 397 Abbt-Braun, G. and Frimmel, F. H. (2002) Fractionation of natural organic matter in drinking water
- 398 and characterization by ¹³C cross polarisation magic angle spinning NMR spectroscopy and size
- exclusion chromatography. *Environ. Sci. Technol.* **36**, 3497-3503.
- 400 Xi, W., Rong, W., Fane, A. G., Fook-Sin, W. (2004) Influence of ionic strength on NOM size and
- 401 removal by ultrafiltration. Proc. International NOM Conference, p. 94, Victor Harbor, South

402 Australia.

Membrane Type	Membrane Polymer	Organics Source	Main Foulant	Membrane Most Affected	Reference
UF, both hydrophobic and hydrophilic	Various	Suwannee River reference samples	Humic acid > fulvic acid	Hydrophobic and less negatively charged	Jucker and Clark 1994
UF, both hydrophobic, hydrophilic	Polyamide, polyethersulphone (PES), cellulosic	Horsetooth Reservoir, Colorado	Neutral hydrophilic compounds	Hydrophobic	Amy and Cho 1999
UF, both hydrophobic, hydrophilic	PVDF	Three Australian waters	High MW neutral hydrophilics	Hydrophobic	Fan <i>et</i> <i>al</i> .2001
UF, both hydrophobic, hydrophilic	Polysulphone, regenerated cellulose acetate	Fractionated soil-derived humic acid	ArCO ₂ H > ArOH	Hydrophobic; PAC of no assistance	Lin <i>et al</i> 2001
UF, hydrophilic	Cellulose acetate	Lake water; soil-derived humic acid	High MW hydrophobic acids	Only hydrophilic tested	Chang and Benjamin 1996; Gu <i>et al.</i> 1995
UF disc membranes, hydrophilic	Regenerated cellulose, cellulose diacetate	Suwannee River humic acid; BSA	Humic acid > protein since easier pore entry	Similar performance for all	Jones and O'Melia 2001
UF, both hydrophobic & hydrophilic	Polysulphone, acrylic copolymer, cellulosic	Lake Decatur, Illinois	Not determined	Hydrophobic	Laîné <i>et</i> <i>al</i> . 1989
UF and NF membranes, both hydrophobic & hydrophilic	Polyamide, PES, sulphonated PES, polysulphone, cellulose acetate, regenerated cellulose	Various surface supplies in California and Japan	Neutral hydrophilics a major foulant, except for very hydrophobic NOM	Hydrophobic membranes adsorbed more humic acids	Amy <i>et</i> <i>al</i> .2001; Kimura <i>et</i> <i>al</i> . 2004
NF, of varying hydrophilicity	Thin film composite, cellulose acetate	Suwannee River, and Australian Dam	Humic acid > fulvic acid especially at high [Ca ⁺⁺]	Hydrophobic	Schäfer <i>et</i> al.1998
NF, hydrophobic	Polysulphone	Fractionated Tar River, N. Carolina	Hydrophobic compounds	Only one tested	Nilson and DiGiano 1996

403	Table 1	Summary of UF and NF membrane performance (hollow fibre systems)
404		

407 Table 2

408 Amount of each NOM fraction in Meredith and Bendigo waters

NOM		% TOC in each Fraction						
Source	SHA	WHA	Char	Neut	Res	HB		
Meredith	43.8	21.9	19.2	15.3	15.1	0.2		
Bendigo	38.6	26.0	19.3	16.1	15.7	0.4		

The effect of Bendigo NOM fractions on flux, DOC 3.8 mg/L, 3 L throughput

Membrane			Re	lative Flux	Σ.			
	Raw	SHA	WHA	SHA +	HA	Char	Neut	HB
				WHA				
PP	0.3	0.5	0.7	0.5	0.7	0.5	0.3	0.3
	0.3*	0.7*	0.8*	0.6*	-	0.6*	0.5*	0.5*
PVDF-1	-	0.2	0.3	0.3	-	-	-	-
	0.09	0.2*	0.4*	0.2*	-	0.3*	0.1*	-
	*							
PVDF-2	0.3	0.7	0.8	0.8	-	0.8	-	-
	0.6*	0.6*	0.9*	0.9*	-	0.9*	0.2*	-
PES-2	0.1	0.3	0.3	0.2	-	-	-	-
	0.2*	0.4*	0.5*	0.3*	-	0.2*	0.08	-
							*	

415 * At 1 L throughput

- 417 Table 4

The effect of NOM fractions on flux, with and without added salts, DOC 3 mg/l, 1.5 L

- throughput

Membrane	Added		Relative Flux				
	Salts*	Raw	SHA	WHA	HA	Char	Neut**
РР	Ν	0.12	0.22	0.32	0.45	0.07	0.07
	Y	0.12	0.21	0.10	0.42	0.31	0.19
PVDF-2	Ν	0.48	0.75	0.77	0.97	0.74	0.45
	Y	0.72	0.65	0.85	0.94	0.57	0.60

* Final concentration 50 mg/L NaCl and 5 mg/L CaCl₂

** Type B, containing hydrophobic bases as well

424		
425		
426		
427		
428	Fig. 1	Bendigo NOM fractions and PP membrane (p. 19)
429		
430		
431	Fig. 2	Meredith NOM fractions and PP membrane (p. 20)
432		

435

438 439 Fig. 1 Bendigo NOM fractions and PP membrane (p. 19)

445 Fig. 2 Meredith NOM fractions and PP membrane.

Figure 3: SEM micrograph (bar = 5 μ m) and EDS spectrum of a fresh PP membrane, showing 452 mostly carbon and some oxygen.

- **Figure 4:** SEM micrograph (bar = $10 \mu m$) and EDS spectrum of a PP membrane following filtration of raw Meredith water, showing higher levels of oxygen, aluminium and silicon than those on fresh
- PP membrane.

Figure 5: SEM micrograph (bar = 5 μ m) and EDS spectrum of a PP membrane following filtration of the Meredith WHA fraction.

Figure 6: SEM micrograph (bar = 10μ m) of a PP membrane following filtration of the Meredith 474 Char fraction showing discrete surface patches and aggregation of small particulate matter. 475 Corresponding EDS spectrum shows mostly carbon, oxygen, some sodium and chlorine.

480 Fig. 7 Meredith NOM SHA fraction filtered through a PP and PVDF-2 membranes. Flux recovery
481 on backwashing is indicated by the width of the lines.

Figure 8: SEM micrograph (bar = $10 \mu m$) and EDS spectrum of a PP membrane following filtration of the Meredith WHA fraction with salt addition (50mg/L NaCl and 5 mg/L CaCl₂). Note that addition of salt to WHA fraction caused 3-fold reduction in flux.