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In Australia, when stormwater systems were first introduced over 100 years ago, they

were constructed independently of the sewer systems, and they are normally the res-

ponsibility of the third level of government, i.e., local government or city councils.

Because of the increasing age of these stormwater systems and their worsening

performance, there are serious concerns in a significant number of city councils regarding

their deterioration. A study has been conducted on the structural deterioration of

concrete pipes that make up the bulk of the stormwater pipe systems in these councils. In

an attempt to look for a reliable deterioration model, a probabilistic neural network

(PNN) model was developed using the data set supplied from participating councils.

The PNN model was validated with snapshot-based sample data, which makes up the

data set. The predictive performance of the PNN model was compared with a traditional

parametric model using discriminant analysis on the same data set. Structural

deterioration was hypothesised to be influenced by a set of explanatory factors, including

pipe design and construction factors—such as pipe size, buried depth—and site factors—

such as soil type, moisture index, tree root intrusion, etc. The results show that the PNN

model has a better predictive power and uses significantly more input variables

(i.e., explanatory factors) than the discriminant model. More importantly, the key factors

for prediction in the PNN model are difficult to interpret, suggesting that besides

prediction accuracy, model interpretation is an important issue for further investigation.

Keywords: Deterioration model; Probabilistic neural networks; Stormwater pipes;

Discriminant analysis

1. Introduction

In Australia, stormwater systems and sewer systems have

been constructed independently for over 100 years. In

comparison to sewers, stormwater pipes contain very little

chemical waste (Micevski et al. 2002). The downstream end

of stormwater systems is connected directly to rivers or

waterways, while sewers end in wastewater treatment

plants. Deterioration of stormwater pipes not only contri-

butes to flooding, but also causes occasional traffic disrup-

tion due to structural failure. Because stormwater is the

third tier in the pipe distribution network behind water

and sewer distribution, and because it is controlled by local

government, it has tended to be the last pipe network

to receive attention with regards to maintenance and

rehabilitation This is reflected in the 2001 Australian

Infrastructure Report Card, in which the Institution of

Engineers Australia (2001) has warned that stormwater

pipe systems in Australia have a poor condition rating

nationally.

Because of the increasing importance being placed on

asset management strategies at both a national and local

level, the deterioration of stormwater systems is causing

serious concerns to a number of city councils. In this study,
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data sets supplied by a number of participating councils

were used to develop models to predict the deterioration of

stormwater pipes over time, at both population level and at

single-pipe level. The former could be used to estimate the

annual budget required for rehabilitation and maintenance,

and to compute the lifecycle cost of the system. The latter is

needed to identify which pipes should be rehabilitated and

in what priority order this should occur. Currently, a

stormwater pipe is assessed through its defect scores, which

are collected visually using either walk-through inspection

or closed-circuit television (CCTV) inspection, or by non-

destructive testing methods (Chang and Liu 2003). The

defect scores are used to grade the condition of stormwater

pipes which are then translated into predictive models. The

condition of stormwater pipes is commonly divided into

structural and hydraulic condition (Micevski et al. 2002) in

order to recognize two different deterioration processes and

consequences. The former deteriorates in most cases as

a result of physical impacts such as overloads and soil

pipe interaction and the ultimate result is pipe collapse

accompanied with traffic disruption. The latter is caused by

gradual reduction of the sectional diameter of pipes due to

tree roots or debris which eventually results in blockage

and flooding.

This paper proposes a probabilistic neural network

(PNN) model that can classify the structural condition

status of a concrete pipe with a number of given attributes

(input factors). Concrete pipes were chosen because they

form the major proportion of the pipe assets existing in

stormwater pipe systems. The proposed model is also

compared against a traditional parametric model devel-

oped using discriminant analysis on the same data set.

Structural deterioration is hypothesised to be influenced

by a set of installation and construction factors, inclu-

ding pipe design, pipe size, buried depth, and site

factors such as soil type, moisture index and tree root

intrusion.

2. Background

2.1 Influential factors in structural deterioration

In a comprehensive review of factors influencing the

structural deterioration and failure of rigid sewers, Davies

et al. (2001a) concluded that a bath tub curve can be

applied to describe the failure probability of sewers over

time. Curves such as these are simplistic and using one

curve to describe the deterioration process for the whole

population of stormwater pipes seems inadequate, as

factors influencing individual pipes (such as installation

practices) can have a significant effect. Thus, it seems that

many different deterioration curves should be employed

instead. For example, it is commonly assumed that the

older the pipes, the poorer the pipe condition; however, this

is often not the case and collapse events sometimes happen

with young pipes, resulting in a reduced level of service-

ability. The deterioration of each pipe needs to be consi-

dered independently and each curve can be considered as

a deterioration pattern, and hence the introduction of

different patterns can cover the uncertainty and complica-

tion in structural deterioration of stormwater pipes. Each

pattern is determined from site factors, pipe design and

construction factors.

Davies et al. (2001a) listed 25 factors that were thought

to influence the structural condition of rigid sewers.

However, in current stormwater databases, only a few of

them are collected and an even smaller set is found to be

statistically significant. These are pipe size, soil type, pipe

material, location for stormwater pipes (Micevski et al.

2002), plus additional factors normally associated with

sewers such as waste type, age, debris, soil corrosiveness,

soil fracture potential and groundwater regime (Ariarat-

nam et al. 2001, Davies et al. 2001b).

2.2 Existing deterioration models

In order to model the deterioration of individual pipes and

the effects of the factors that control deterioration, a

number of methodologies can be applied. Multiple regres-

sion models (Madanat et al. 1995, Wirahadikusumah et al.

2001) were employed in first attempts at modelling

deterioration of infrastructure facilities because of their

simplicity in mathematical operations and capability to

describe the direct relationship between the input factors

and the outcome. However, they fail to reflect the

probabilistic nature in the deterioration process, require

assumptions to be made on data errors that are difficult to

verify and, finally, try to fit data-sensitive sample means

from a limited data set to a full population mean (Tran

et al. 2005).

Micevski et al. (2002) discussed the relevance of a

multistage Markov model for modelling the deterioration

of stormwater pipes and concluded that they were suitable.

However, the model was based on pipe cohorts and was not

intended to predict the future condition for a single pipe. A

few Markov models for sewers using different techniques to

calibrate Markov transition probability have been devel-

oped. They are non-linear optimisation (Wirahadikusumah

et al. 2001), expert opinion (Kathula 2001) and rule-based

simulation (Ruwanpura et al. 2003), which can be used to

predict pipe condition at cohort (group) level. Madanat

et al. (1995) proposed a probit technique to link input

factors with the targets in a Markov model for the

deterioration of bridge decks. This proposed model could

be used to predict the future condition at the level of a

single pipe. However, its use would require regular

inspection for each pipe segment in the sample so that the

model could be validated. Unfortunately, there are not
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many stormwater pipe databases available with enough

data to allow this validation process to take place.

On the other hand, as discussed by Flintsch and Chen

(2004), soft computing techniques can be a promising and

powerful tool for modelling various aspects of infrastruc-

ture systems, such as condition assessment, performance

prediction and rehabilitation prioritisation, and the devel-

opment of neural networks (NNs) shows promise in this

area. In comparison with the soft computing techniques,

case-based reasoning (CBR) may be better than NN in

terms of predictive performance and flexibility in certain

cases (Arditi and Tokdemir 1999). However, CBR models

require a large and continuously updated database

(case library) so that a new query case can be solved

properly (Arditi and Tokdemir 1999). Whilst fuzzy logic

techniques may be applicable, they appear to depend

mainly on expert opinions to establish the relationships

between input factors and output targets (Kleiner et al.

2004). In comparison, NNs use a mathematically flexible

platform to construct the relationships for various

applications (Lou et al. 2001, Attalla and Hegazy 2003,

Osman et al. 2005). As an improvement to NN in modelling

uncertainty within the requirements of probabilistic out-

comes, the PNN, which was originally developed by

Specht (1990), has been recently adopted for the prediction

of concrete strength (Kim et al. 2005) and in the reliability

assessment of oil and gas pipelines (Sinha and Pandey

2002).

3. Methodology

The methodology developed in this study used a PNN to

classify the different deterioration patterns for stormwater

pipes. In the PNN model, each deterioration pattern is

developed from an input pattern, consisting of a combina-

tion of input factors including pipe design, construction

and site factors. Hence, it can predict which structural

condition that a pipe with a number of given attributes

belongs to. Using the NN platform, the PNN model can be

validated with a snapshot based upon sample data, and it

can mimic the non-linear relationships and probabilistic

nature of pipe deterioration which will be explained later.

Additionally, it can be easily updated with new sample data

(Wasserman 1993). Similarly to the NN model when

applied to pavements (Lou et al. 2001), the PNN can also

account for the Markov property of historically indepen-

dent transition between structural condition grades. For

example, if the structural condition of a pipe is being

collected consecutively, then such information can be

treated as a pipe attribute, which may contribute to the

prediction of future condition. Furthermore, the main-

tenance and rehabilitation history, if recorded, can be easily

accounted for in a PNN as a pipe attribute for the input

pattern. To allow comparison of the outcomes of the PNN

with an alternative methodology, discriminant analysis was

also carried out. Discriminant analysis can be adopted to

classify ordinal data and identify statistically significant

input factors using a stepwise method (Dillion and Gold-

stein 1984). The following sections present the PNN archi-

tecture and discriminant analysis.

3.1 PNN classification

A PNN is actually a special form of NN used to implement

Bayesian classification techniques incorporating Parzen

univariate estimation.

Bayesian classifiers, as shown in equation (1), can be used

to classify two categories (Wasserman 1993):

dðXÞ ¼ C1 if l1h1f1ðXÞ > l2h2f2ðXÞ
C2 if l1h1f1ðXÞ < l2h2f2ðXÞ

�
ð1Þ

where X is a p-dimensional random vector, d(X) is an image

of X in a set of categories, Ci is the ith category, li is the loss

associated with misclassifying a vector of the ith category

into other category, hi is the prior probability of occurrence

in the ith category, and fi(X) is the probability distribution

function (pdf) for ith category.

The purpose of equation (1) is to minimise the expected

risk (Kim et al. 2005) in classification, and the product of hi
and fi(X) is a posterior probability from Bayesian theorem

that allows the updating of existing knowledge hi with new

information fi(X). The existing knowledge hi could be

obtained from a previous sample or expert opinion and

fi(X) is determined by applying an established mathematical

foundation (Parzen 1962) to estimate the univariate pdf of

a population from its sample, by taking an average sum of

suitably chosen kernel (pdf) values for each observation in

the sample. Estimation of the multivariate density function,

as discussed by Cacoullos (1966), can be achieved by firstly

taking the multivariate pdf of an observation as a product

of its univariate kernel, then applying Parzen’s average sum

to estimate the multivariate pdf.

An example of using the Gauss kernel for each obser-

vation of a random variable to estimate its density function

is shown in equation (2). The meaning of the smoothing

parameter s in the case of the Gauss kernel, is that

univariate Gauss is sharply peaked with s smaller than

one, and tends to flatten with increasing s (Wasserman

1993).

fðXÞ ¼ 1

n

1

ð2pÞp=2sp
Xn
i¼1

e

ðX�XiÞTðX�XiÞ
�2s2

ð2Þ

where X is a p-dimensional random vector, f(X) is the pdf of

X, and n is the number of observations in the sample

(sample size).
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The loss li can be calculated or subjectively estimated, but

usually it is assigned the same value for all classes. For

example, when considering repair cost, the loss for the large

size pipe will be higher than the smaller size pipe; when

considering pipe failure’s consequence, the loss in a urban

area might be higher than in a rural area. The criteria can

be extended for more than two classes in which the chosen

class would have the largest product value.

Figure 1 shows a configuration of the PNN with four

layers that was used in the case study described in section 4.

There were nine input factors, which created a nine-

dimensional input vector X¼ (X1, X2, X3, . . . ,X9). Each

pipe had a combination of specific values of the input

vector—called an input pattern—that described the oper-

ating environment of the pipe. For example, an input

pattern could be pipe size 1000 mm, age 30, depth 2 m,

slope 0.5%, under road, five counts of trees, poor hydraulic

condition, clay soil and the Thornthwaite moisture index

(TMI) of dry condition. The PNN model classifies that pipe

from its input pattern into one of three structural categories

(output targets or classes) as follows:

. In the input layer, the number of neurons is equal to the

number of input factors.

. In the pattern layer, the total number of neurons is the

sum of the numbers of neurons used to represent the

patterns for each category. Each category may contain

many training patterns (training vectors) whose dimen-

sion is equal to the number of input factors, and taking

a set of specific values of input factors. The training

vectors are imported from sample data and hence they

are not always necessarily representative of all existing

patterns for that class. However, this is the advantage of

PNN, in that it can generalise to allow recognition of a

new pattern of a class (Wasserman 1993). The activa-

tion function in the pattern layer can be chosen from

some kernel density functions (Scott 1992), but the

Gauss kernel is more commonly used.

. In the summation layer, the number of neurons is equal

to the number of categories. The activation is simply a

weighted sum function. The outgoing signals can be

adjusted according to loss and prior probability value.

. In the output layer, there is one neuron to represent the

classification result. The activation function is an arg

max function, which outputs the category associated

with the largest value between incoming signals (Kim

et al. 2005). It can be seen from here that the PNN

configuration can allow us to express the non-linear

Figure 1. PNN configuration for one output target with three categories.
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combination effects of all input factors as a single

function detailing the pipes’ deteriorated condition.

This is done via choosing an appropriate shape for the

kernel (e.g., Gaussian kernel) and the sum of kernels

which creates a non-linear deterioration curve for each

pipe condition. Therefore, each curve represents those

pipes with different attributes (e.g., age, size) but

having a common deterioration rate. The resulted set

of deterioration curves will be used for classifying a

query pipe.

Similar to a NN operation, a PNN also needs a training

stage before being used for classification. However, the

differences are that the training stage of a PNN is actually

to keep the training vectors in the system by assigning their

value into weights connecting the neurons in the input layer

to corresponding neurons in the pattern layers. Also, a

smoothing parameter can be determined by either using

trial and error in testing vectors (Kim et al. 2005) or

applying a genetic algorithm to minimise the classification

errors in the training vectors (Mao et al. 2000).

In the classifying stage of a new test vector, the incoming

signals to the pattern neurons are the distances between test

vector and pattern vectors. The distance can be computed

using one of the dissimilarity functions; however the

Euclidean distance function, as shown in equation (3), is

often used (Yue and Tao 2005):

DðX;YÞ ¼ kX� Yk¼
Xp
i¼1
ðxi � yiÞ2

 !1=2

ð3Þ

where D(X,Y) is the distance between the two vectors X and

Y, xi and yi are coordinates of X and Y, respectively, and p

is the dimension of the vector. In the pattern layer, the

pattern probability that the test vector may come from one

pattern vector in a category (pipe condition) is known by

applying the computed distance to the kernel density.

In the summation layer, the probability that the test vector

belongs to that category is the sum of all pattern pro-

babilities. Finally, in the output layer, the category with the

highest computed probability will be assigned to the test

vector.

3.2 Discriminant analysis

As discussed earlier, discriminant analysis can be used as an

alternative to PNN analysis. Discriminant analysis is one of

the multivariate parametric methods that can classify the

groups or categories in a dependent variable, given the set

of independent variables or explanatory factors. Dillion

and Goldstein (1984) mentioned the analogy and differ-

ences between multiple discriminant analysis and multiple

regression that are commonly used to compare with

NN applications (Chao and Skibniewski 1995, Tarefder

et al. 2005). The similarity is that both discriminant and

regression methods assume a linear relationship between

input factors and the dependent variables. However, the

former requires categorised dependent variables and mini-

mises the probability of misclassifying, while the latter is

suitable for scaled dependent variables and for finding the

population mean of dependent variables. Furthermore, in

terms of analysis methods for categorised dependent

variables, the straightforward outcome in connection with

the observed values of dependent variables is the reason

why discriminant analysis is selected in this paper; though it

requires more assumptions than logistic regression methods

(Dillion and Goldstein 1984).

In discriminant analysis, a set of uncorrelated linear

functions of explanatory factors is estimated using a maxi-

mum likelihood technique from sample data, to separate

the groups in the dependent variables. The maximum

number of applicable linear functions is equal to or less

than the number of groups minus 1, since some functions

may fail a statistical significance test. A generic linear

function di is shown in equation (4):

di ¼ b0 þ bi1X1 þ bi2X2 þ � � � þ bipXp ð4Þ

where i¼ 1 to (k-1) with k being the number of groups, b is

the vector of standardised coefficients and X \Rp is the

vector of p explanatory factors. Each observation of pipe

attributes contained in the sample data can be visualised as

a point in p-dimension space, and di is a set of new

estimated axis that can separate that point into correspond-

ing groups when projected on the axis in succession. The

projections of a point and group centroids on a new axis

are defined as a discrimination score and mean scores,

respectively. The group centroid is estimated from sample

data by taking mean values of each factor. A point is

considered to belong to a group if its distance to the group

centroid (represented by an absolute score difference) is

smaller than to other groups. In other words, the cut point

value is the middle between group centroids. However, the

position of cut points would be moved away from the

middle position under the following circumstances: unequal

sample size between groups; a prior probability for a point

belonging to a group is known and cost of misclassification

is included (Dillion and Goldstein 1984).

4. Case study

This study used a data set supplied by the City of Greater

Dandenong in Victoria, Australia, for 800 km of storm-

water pipes. From 1999 to 2002, CCTV inspections were

carried out, resulting in nearly 650 data points being

obtained from a total length of 27 km, which is equivalent

to 3.4% of the system length. The inspection strategy
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focused on older pipes and on some locations reporting

flooding or blockages. However, the inspection was of a

single snapshot type, in that none of the piping has received

a second inspection. Also, no records of maintenance or

rehabilitation have been recorded. Hence, the deterioration

model developed for the case study does not account for

rehabilitation effects.

The supplied data set provides seven factors, as detailed

in table 1, which are used as inputs for analysis. The

structural and hydraulic conditions appeared to be graded

into three separate levels—(1) good, (2) fair and (3) poor

(need further investigation)—following the grading proto-

col recommended by the Water Services Association of

Australia (WSAA 2002). Firstly, each pipe segment was

further divided into individual lengths equal to 1 meter.

Defect scoring was carried out for structural and hydraulic

conditions, respectively. A total score was computed for the

whole segment and individual length. The mean score is the

average of total score over the segment length. Peak score is

the highest total score found among individual lengths.

Peak score reflects the fact that a pipe with low mean score

still deserves attention if its peak score is high since several

defects at one location may cause the pipe failure at that

location. Finally, each pipe segment was graded into one of

three levels when comparing its peak and mean score with

threshold values. Based on a review of existing knowledge,

the soil type and TMI—which is a climatic classification

that can relate to soil movement (McManus et al. 2004)—

were added into the input factors by inferring data from

soil maps and pipe installation depths. Both soil type and

TMI factors are of nominal data types and categorised into

four and six groups, respectively. Unfortunately, the data

relating to trees was only available in about 50% of the

cases compared to the other factors. After checking the

distribution of the available tree data, a lognormal

distribution was used to create estimated data to complete

the missing data in the set. Nine input factors were finally

used in this study, as detailed in table 1. After data

cleaning, only 583 data points were valid for analysis, and

these were randomly divided into a calibration data set

(75%) and a validation data set (25%). The calibration

data set was used to train the PNN and calibrate the

parameters of the discriminant analysis. Both methods were

then tested using the validation data set. The numbers of

pipes observed in conditions 1, 2 and 3 in the calibration

data set were 114, 36 and 282, respectively. For the

validation data set, the numbers were 47, 12 and 92,

respectively. Even though unbalanced numbers of observa-

tions existed for each pipe condition, the prior probability

of the PNN model and the cut point adjustment of the

discrimination model were ignored. This was because the

unbalance was not caused by the inspections and no prior

knowledge was available. Furthermore, the loss of mis-

classification was not applied considering that all pipes are

equally important.

4.1 PNN model

The Probabilistic Neural Network Tool of the MATLAB1

software package was used as a PNN classifier for the case

study. The radial basis function (Demuth and Beale 2001),

as shown in equation (5), was used as a kernel function to

compute a probability value of the test vector X (a new

input pattern):

fkðXÞ ¼
Xmk

i¼1
e�
ðX�XkiÞ

TðX�XkiÞ
2s2 ð5Þ

where X is a nine-dimensional test vector, fk(X) is the

probability value of X in the kth category, XkiXki is the ith

observation in the kth category from the calibration data

set, k¼ [1 3] since there are three categories of pipe

condition, mi is the number of observations associated

with pipe conditions 1, 2 and 3, respectively, in the

calibration data set, and s¼ 0.775 (determined by trial

and error).

Training the PNN was done in just a fraction of a

second—it simply created the number of sets of weights,

which are equal to the number of observations in each pipe

condition. Then each set of weights was assigned the

corresponding values of factors found in observations.

4.2 Discriminant model

A discriminant model using all of the input factors was also

developed for the case study. All computations and

Table 1. Input factors used in the study.

Input factors Description

Sizea Scale (225 to 1950 mm)

Agea Scale (0 to 65 years)

Deptha Scale (0 to 4.83 m)

Slopea Scale (71.85 to 22.85%)

Locationa (1 – 4) Nominal (1—reserve, 2—under road,

3—under nature strip, 4—under easement)

Tree_new* Scale (1 to 22 counts) (number of trees around

pipe)

Hydraulic conditiona Ordinal (1—good, 2—fair, 3—poor (needs

further investigation))

Soil type (1 – 4) Nominal (1—dark grey sand (0 – 0.3 m),

2—light grey sand (0.3 – 0.5 m), 3—clay

(0.5 – 1.5 m), 4—other (41.5 m))

TMI (1 – 6) Nominal (1—wettest (0 – 1.5 m), 2—wetter

(1.5 – 1.8 m), 3—wet (1.8 – 2.3 m), 4—dry

(2.3 – 3.0 m), 5—drier (3.0 – 4.0 m),

6—driest (44.0 m))

aData provided by the City of Greater Dandenong.

180 D. H. Tran et al.



statistical tests were performed by the SPSS1 software

package. The criterion for all statistically significant tests

was a 95% confidence level. Tables 2 and 3 show two types

of discriminant functions (DFs) with coefficients estimated

from the sample data. The first one, called the standardised

canonical DF, showed estimated parameters of equation

(4) and allowed a comparison of input factors measured on

different scales. Coefficients with large absolute values

correspond to factors with greater discriminating ability.

However, the second type of DF, called Fisher DFs, are

more useful practically in reducing computing steps, since a

group is assigned to a given pipe if its Fisher DF value is

the largest among three computed function values.

5. Findings and discussion

The results obtained from applying the two models to the

validation data set were compared with each other. The

goodness-of-fit test, performance rate and significant

factors were the three areas considered in the comparison

of the methodologies.

5.1 Goodness of fit

The chi-square test w2 (Micevski et al. 2002) for goodness of

fit was carried out on the validation data set for the PNN

models using the null hypothesis (H0) that the predicted

targets and observed targets are not statistically different.

The result (w2¼ 1.205 w2(0.05,2)¼ 5.99) accepted the null

hypothesis, which suggests that the PNN model is a

potential model for the prediction of structural condition.

The chi-square test for the discriminant model showed a

unacceptable result (w2¼ 63).

5.2 Performance rate

The performance rate is a useful tool to assess the

prediction performance of the models (Kuncheva 2004).

A correct prediction is counted when the predicted value is

consistent with the observed. The performance rates for

both the PNN model and discriminant model were

computed on calibration and validation data sets using

equation (6). The results are shown in table 4, where it can

be seen that the PNN model is significantly better than the

discriminant model:

Performance rate ð%Þ

¼ 100 �Number of correct prediction

Number of data points
ð6Þ

5.3 Significant factors

A stepwise method (Dillion and Goldstein 1984) was used

for the discriminant model to identify the statistically

significant factors that are the best predictors for pipeline

condition. Among the nine input factors, hydraulic

condition is the only significant predictor. This implies

that the remaining eight factors could be withdrawn from

the discriminant model without significantly reducing the

prediction performance of the model. Table 4 shows

that using only the hydraulic condition factor with the

discriminant model increases the performance of that

Table 2. Standardised canonical discriminant function
coefficients.

Function

Factors 1 2

Size 0.422 0.219

Age 0.100 0.619

Depth 0.122 0.018

Slope 70.196 70.291

Location 70.358 0.616

Tree_new 0.124 70.092

Hydraulic 0.736 0.198

Soil 0.156 70.258

TMI 70.150 70.216

Table 3. Factor coefficients of three Fisher functions
corresponding to three structural conditions.

Structural condition

Factors Good Fair Poor

Size 70.001 70.001 70.001

Age 0.799 0.841 0.797

Depth 8.819 8.792 8.725

Slope 0.629 0.577 0.666

Location 1.780 2.156 1.971

Tree_new 0.393 0.345 0.352

Hydraulic 5.207 5.138 4.782

Soil 20.489 20.166 20.320

TMI 79.574 79.647 79.519

(Constant) 758.522 759.441 756.865

Table 4. Comparison of performance rate between PNN and
discriminant model.

Performance rate (%)

Calibration

data set

Validation

data set

PNN model 71.5 66.9

Discriminant model

(using all input factors)

42.8 36.4

Discriminant model

(using only hydraulic factor)

55.6 51.0
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model and moves it closer to the performance of the PNN

model.

A univariate analysis using the chi-square test for factors

with nominal and ordinal measurements, and a one-way

ANOVA test (Tabachnick and Fidell 2001) for factors

with scale measurement, were also conducted to test the

marginal significances of the factors. The results of the one-

way ANOVA test, as shown in table 5, indicate that pipe

depth and slope factors could be considered to affect

the structural deterioration individually. Figure 2 presents

change patterns of mean values for each factor when struc-

tural conditions get worse (increasing from 1 to 3). Since

these values are substantially different (e.g., mean pipe size

is 716, mean depth is 1.73 on structural condition 1), they

are all scaled to fit for presentation on the same figure 2

without detracting from its purpose. It can be seen from

figure 2 for two significant factors that the greater the slope

the poorer the condition, but the reverse might be true for

the depth factor.

As detailed in table 6, the outcomes from the chi-square

test show that only the hydraulic condition factor is found

to significantly affect the structural deterioration in the data

set. This is consistent with the result of the stepwise method

discussed above that structural conditions depend on

hydraulic conditions. Tests of soil and TMI factors were

restricted between groups 3/4 and between groups 1/2/3/4,

respectively, since the number of data points in the

remaining groups failed to meet the requirements of the

chi-square test. However, they are not found to be statis-

tically significant factors.

5.4 Discussion

There are some possible reasons for the observed perfor-

mance rate of both models, which are not as high as

expected. Firstly, there are many other factors such as tree

age, annual rainfall and historical pipe condition that can

influence the structural deterioration of stormwater pipe-

lines, but which were not included in the supplied data set.

Secondly, the use of a three-state grading scheme (WSAA

2002) in conjunction with an old pipe-skewed CCTV inspec-

tion program, resulted in a biased distribution of pipe

conditions that did not represent the actual distribution of

pipe conditions across the network, i.e., the number of pipes

in condition 3 was unnaturally high since more of the pipes

in this condition were targeted for CCTV analysis. This

caused a improper probability estimation. The use of

popular 5-state grading schemes in UK and Canada (Vanier

and Rahman 2004) should be considered since they can

differentiate pipes in poor, worse and near collapse

condition. This will reduce the number of pipes graded in

condition 3. As a result, there will be more and adequate

deterioration curves which can subsequently improve the

performance rate of both models and factorial analysis.

Table 5. Comparisons of mean value between factors
(one-way ANOVA).

Structural

condition

Mean values

Counts Size Age Depth Slope Tree_new

1 161 716.46 38.38 1.73 1.10 2.74

2 68 678.13 40.48 1.51 1.12 2.65

3 374 655.35 38.45 1.59 1.56 2.45

P-value 0.15 0.23 0.06a 0.05a 0.3

aStatistically significant factors.

Figure 2. Comparison of factor mean values.
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Lastly, subjective condition grading based on existing

(mainly visual) inspection techniques may produce too

much error.

After analysing the results, it is not surprising that age

was not a significant factor in controlling deterioration,

since structural deterioration seems to be the result of the

combined effect of various factors that were marginally

tested in this study and those not yet recorded. Rather, the

age factor should be used as a reference point in monitoring

structural deteriorations. Pipes with steeper slopes would

be subjected to more damage possibly due to voids in the

soil, soil movement and pipe joint defects. Shallowly buried

pipes would be subject to more damage due to surface load,

illegal connections and tree root intrusion. The significance

of hydraulic condition found in this study was contradicted

by another study in New South Wales (Micevski et al.

2002), which found that hydraulic condition was not a

prime indicator of pipe deterioration. The results obtained

by Micevski et al. (2002) can be explained because struc-

tural damage such as joint defects, pipe fracture and wide

cracks allow the intrusion of debris, soil, obstacles and tree

roots into the pipe network. Hence, the hydraulic condition

can be associated with these factors to act as an indicator or

predictor to forecast the structural condition of pipes.

Surprisingly, the size factor was not found to be signifi-

cant. However, larger pipes are usually buried deeply since

stormwater pipes are gravity systems, and smaller pipes

feed into larger pipes at greater depths. This implies that for

larger pipes, the structural condition is better, which is

consistent with the trend shown in figure 2.

The effect of the location factor on structural conditions

did not indicate the effect of any critical environments such

as coastlines or industrial zones in either this study or in the

previous study by Micevski et al. (2002).

The insignificance of the ‘number of trees’ factor found

in the study did not fully support a conclusion that trees do

not affect structural condition. It is recommended that a

further investigation on tree types, tree age and tree height

be carried out to fully investigate the effects of these factors

on pipeline deterioration.

6. Conclusions

In this paper, the effects of a number of different factors on

the deterioration of concrete stormwater pipe networks are

analysed. The probabilistic neural network (PNN) model

used in this study was found to marginally outperform a

discriminant analysis model in terms of prediction perfor-

mance. The PNN was found to be a promising tool for

predicting the deterioration of single stormwater pipes.

However, since the predictive performance of the PNN

model is still not high, a pipe with predicted condition

3 should be given more attention in any maintenance

program and expert opinions should be sought for final

decision. Furthermore, the key factors for prediction in the

PNN model were found to be difficult to interpret,

suggesting that besides prediction accuracy, the model

interpretation is an important issue for further investiga-

tion. When using the discriminant analysis model, hydrau-

lic condition was determined to be the only significant

factor affecting structural deterioration. However, when

local statistical tests were used instead, pipe depth, slope

and hydraulic conditions were found to be marginally

significant factors.
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