43 research outputs found

    Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1

    Get PDF
    We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin.Fil: Daniels Wells, Tracy R.. University of California; Estados Unidos de América;Fil: Helguera, Gustavo Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. University of California; Estados Unidos de América;Fil: Rodríguez, José A.. University of California; Estados Unidos de América;Fil: Leoh, Lai Sum. University of California; Estados Unidos de América;Fil: Erb, Michael A.. University of California; Estados Unidos de América;Fil: Diamante, Graciel. University of California; Estados Unidos de América;Fil: Casero, David. University Of California; Estados Unidos de América;Fil: Pellegrini, Mateo. University of California; Estados Unidos de América;Fil: Martinez Maza, Otoniel. University of California; Estados Unidos de América;Fil: Penichet, Manuel L.. University of California; Estados Unidos de América

    Rationale and preclinical efficacy of a novel anti-EMP2 antibody for the treatment of invasive breast cancer

    Get PDF
    Despite significant advances in biology and medicine, the incidence and mortality due to breast cancer worldwide is still unacceptably high. Thus, there is an urgent need to discover new molecular targets. In this article, we show evidence for a novel target in human breast cancer, the tetraspan protein epithelial membrane protein-2 (EMP2). Using tissue tumor arrays, protein expression of EMP2 was measured and found to be minimal in normal mammary tissue, but it was upregulated in 63% of invasive breast cancer tumors and in 73% of triple-negative tumors tested. To test the hypothesis that EMP2 may be a suitable target for therapy, we constructed a fully human immunoglobulin G1 (IgG1) antibody specific for a conserved domain of human and murine EMP2. Treatment of breast cancer cells with the anti-EMP2 IgG1 significantly inhibited EMP2-mediated signaling, blocked FAK/Src signaling, inhibited invasion, and promoted apoptosis in vitro. In both human xenograft and syngeneic metastatic tumor monotherapy models, anti-EMP2 IgG1 retarded tumor growth without detectable systemic toxicity. This antitumor effect was, in part, attributable to a potent antibody-dependent cell-mediated cytotoxicity response as well as direct cytotoxicity induced by the monoclonal antibody. Together, these results identify EMP2 as a novel therapeutic target for invasive breast cancer.Fil: Fu, Maoyong. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Maresh , Erin L.. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Helguera, Gustavo Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires; ArgentinaFil: Kiyohara, Meagan. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Qin, yu. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Ashki, Negin. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Daniels Wells, Tracy R.. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Aziz, Najib. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Gordon, Lynn K.. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Braun, Jonathan. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Elshimali, Yahya. Charles Drew University. Department of Pathology; Estados UnidosFil: Soslow, Robert A.. Memorial Sloan-Kettering Cancer Center. Department of Pathology; Estados UnidosFil: Penichet, Manuel L.. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Goodglick, Lee. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados UnidosFil: Wadehra, Madhuri. University of California Los Angeles. David Geffen School of Medicine at UCLA; Estados Unido

    Human Mast Cells From Adipose Tissue Target and Induce Apoptosis of Breast Cancer Cells

    Get PDF
    Mast cells (MC) are important immune sentinels found in most tissue and widely recognized for their role as mediators of Type I hypersensitivity. However, they also secrete anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The purpose of this study was to investigate adipose tissue as a new source of MC in quantities that could be used to study MC biology focusing on their ability to bind to and kill breast cancer cells. We tested several cell culture media previously demonstrated to induce MC differentiation. We report here the generation of functional human MC from adipose tissue. The adipose-derived mast cells (ADMC) are phenotypically and functionally similar to connective tissue expressing tryptase, chymase, c-kit, and FcεRI and capable of degranulating after cross-linking of FcεRI. The ADMC, sensitized with anti-HER2/neu IgE antibodies with human constant regions (trastuzumab IgE and/or C6MH3-B1 IgE), bound to and released MC mediators when incubated with HER2/neu-positive human breast cancer cells (SK-BR-3 and BT-474). Importantly, the HER2/neu IgE-sensitized ADMC induced breast cancer cell (SK-BR-3) death through apoptosis. Breast cancer cell apoptosis was observed after the addition of cell-free supernatants containing mediators released from FcεRI-challenged ADMC. Apoptosis was significantly reduced when TNF-α blocking antibodies were added to the media. Adipose tissue represents a source MC that could be used for multiple research purposes and potentially as a cell-mediated cancer immunotherapy through the expansion of autologous (or allogeneic) MC that can be targeted to tumors through IgE antibodies recognizing tumor specific antigens

    A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy

    Get PDF
    Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 andCD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa.Fil: Daniels-Wells, Tracy R. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Helguera, Gustavo Fernando. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Departamento de Tecnologia Farmaceutica; Argentina; University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Leuchter, Richard K. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Quintero, Rafael. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Kozman, Maggie. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Rodríguez, José A.. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América;Fil: Ortiz-Sánchez, E. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; Biomedical Research in Cancer. Basic Research Division. National Institute of Cancerology; Mexico.;Fil: Martínez-Maza, Otonel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Schultes, Brigit C.. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Nicodemus Christopher. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Penichet, Manuel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    A Fully Human IgE Specific for CD38 as a Potential Therapy for Multiple Myeloma

    No full text
    Multiple myeloma (MM) is an incurable malignancy of plasma cells and the second most common hematologic malignancy in the United States. Although antibodies in clinical cancer therapy are generally of the IgG class, antibodies of the IgE class have attractive properties as cancer therapeutics, such as their high affinity for Fc receptors (FcεRs), the low serum levels of endogenous IgE allowing for less competition for FcR occupancy, and the lack of inhibitory FcRs. Importantly, the FcεRs are expressed on immune cells that elicit antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and/or antigen presentation such as mast cells, eosinophils, macrophages, and dendritic cells. We now report the development of a fully human IgE targeting human CD38 as a potential MM therapy. We targeted CD38 given its high and uniform expression on MM cells. The novel anti-CD38 IgE, expressed in mammalian cells, is properly assembled and secreted, exhibits the correct molecular weight, binds antigen and the high affinity FcεRI, and induces degranulation of FcεRI expressing cells in vitro and also in vivo in transgenic BALB/c mice expressing human FcεRIα. Moreover, the anti-CD38 IgE induces ADCC and ADCP mediated by monocytes/macrophages against human MM cells (MM.1S). Importantly, the anti-CD38 IgE also prolongs survival in a preclinical disseminated xenograft mouse model using SCID-Beige mice and human MM.1S cells when administered with human peripheral blood mononuclear cells (PBMCs) as a source of monocyte effector cells. Our results suggest that anti-CD38 IgE may be effective in humans bearing MM and other malignancies expressing CD38
    corecore